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SECTION K » COMI"LE.X NUMBERS AND
THMEIR GEOMETRIC REFPRESENTATION

CHAPTER 1

FOUNDATIONS X

1. Introduction el

The name “Theory of Funciions” is used to den(v% all those
investigations which arise if one seeks to transfer\the problems
and methods of real analysis (i.e., differential and integral cal-
culus, and related fields) to the case in.g¥hich all numerical
quantities (constants, independent and dependent variables)
that appear are permitted to be gf}inplex numbers, that is,
numbers of the form ¢ + b+ — 1) Edrly and quite automatic-
ally such considerations forcedtheir way into investigations
conneeted with various problems in real analysis, and have been
carried out, in conjunction with the solution of these problems,
in the course of centuries,—hesitantly at first, but soon with
ever greater success (see’§4 for further details). Today the theory
of functions is ong of\the most extensive and important branches
of higher mathematics.

In these Eleients of the Theory of Functions we shall treat
only those topics which are simplest, but which are at the same
time mbst/important for the further development of the theory.*
Thig\ includea, first, an introduction to the system of complex
nmnbers and the operations performed on them. Then, the
Y ‘Tlns development is given by the present author in the following two
little volumes: Theory of Funetions, Part I Elemenis of the General Theory
of Analytic Functions, translated from the 5th German edition, New York,
1945; and Theory of Functions, Part IT: Applications and Continugtion
of the General Theory, translated from the 4th German edition, New York,
1947. We shall refer to these volumes, in what follows, as “Th. F. I'! and
“Th. F_ 11" for hrevity. :

4 . 1
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concept of sets of numbers, the limit concept, and 'closely
related matters, in particular the theory of infinite series, are
extended to complex quantities, or, as we say briefly, “to the
complex domain,” Further, we shall earry over the notion of
* function and its most important properties to the case in which
independent and dependent variables are complex. When com-
bined -with the limit coneept, this yields the foundations of a
differential calculus for functions of a complex variable. Finally, .
we shall study more closely the so-called elementary functions, A\
including the rational, and, in particular, the linear, functiong,)y
the exponential funetion, the trigonometric functions and
several others, as well as their inverses, such as the logarithm
and the cyclometric functions. The extension of th‘s\ nitegral
calculus to the complex domain, however, is not regarded as
belonging property to the elements of the theory of functions.
We shall see (chs. 2 and 3) that the operations performed on
complex numbers, and, eventually, that all’ the investigations
just mentioned, can be visualized, ina humber plane or on a
‘number sphere, even more vividly than in the “real domain”,
This forms the content of that part of our theory which is called
“geometric theory of functions'l ™
T4 is evident from what_hds been said, that in order to be
able to understand thisdittle book, a knowledge of the founda-
tions of real analysis(émd of the elements of analytic geometry
. is indispensable inasmuch as the extension to the complex
domain is accomplished after the pattern of real analysis, and -
use is made 3.):f~\simple geometric facts for purposes of visualiza-
tion, Sossﬁ) have a fixed point of departure, we shall state in
§2 what\is most important concerning the system of real num-
bexs, which constitutes the foundation for the erection of real
. smalysis, and shall discuss in §3 what is most fundamentsl as
rogards the construction of analytic geometry.

2. The system of real numbers

‘We presuppose familiarity with the system of real numbers,
- of course, a8 far as its practical use is concerned; but because

of its fundamental importance, we shall present briefly here the
essential ideas which lead to its construction.
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The starting point of all investigations concerning nurnbers
is the sequence of natural numbers, 1, 2, 3, ..., and the two
“operations” on them: addition and multiplication. The necessity
of performing the “inverses” of these operations presently com-
pels the introduction of 0 (zero), negative numbers, and, finally,
fractions, The totality of integral, fractional, positive and nega-
tive numbers, and gzero, is called the system of (real) rational
numbers.

One can operate with these numbers, which are now denot&
for brevity by single Roman letters, according to certain' rules
which are ealled the fundamenials laws of arithmetic. 'I?}gese are
the following, in which by “numbers” we mean, for\the present,

only the rational numbers just referred to: \* o

1. FUNDAMENTAL LAWS OF EQUALITY ANB QRDER

1. The set of numbers is an ordered sei; X” if @ and b are any
numbers, they satisfy one, and only one oﬁ ¢ relations”

a < b, a—b ‘:a>b

Thig order obeys these addltmnal Iaws

2. @ = a for every number a’

3. a = bimplies b = :

4 Ifa=badb =& tkena

5Ifa5b¢mdb%\cortfa<bandb ¢, then o < ¢.

All numbers whith are greater than zero are called positive,
all numbers whigh are less than zero are called negative. If a
number is equal to zero, we also say that it “vanishes”.

II. FJJ@)AMENT&L LAWS OF ADDITION

1. AEvkry pair of numbers o and b can be added; the symbol
(a + b) or-a + b always represents o definite number, the sum
(0fa and b.

3“ TRead: a is less than b, @ is equal to b, a is greater than b. ¢ > b is merely
another way of writing the relation & < a.

The negations of these three relations are written as follows:

a = b (ais greater than or equal to b, o is at least as great as b, o ie ot
less than b),

a » b (& iz not equsl to &),

¢ = b (a is less than or equal to b, a iz at most as great as b, a is not

greater than b),



" . 'This formation of sums obeys these laws:
2 lfa=d adb =V, thna+b=2a +Pb. (“If equals
are added to equals, the sums are equal.”)
3. a +b = b + a. (Commutative law.)
4 @+ B +e=a+ (b + c). (Associative law.)
5. a < b.implies a + ¢ < b + ¢. (Monotonic law.)

IIl. FUNDAMENTAL LAW OF SUBTRACTION

. The inverse of addition can always be performed; i.c., if a and b \
are any numbers, there exists a number” x such that a + x = bl ™

The number z thus determined is called the dtﬁereme of b
and ¢, and is denoted by (b — a).

.\\ 3

$

IV. FUNDAMENTAL LAWS OF MULTIPLICATION, \/\"

1. Every pair of numbers ¢ and b can be multiplied; the symbol
a-b or ab always represents a definite numben, the product of a
and b, O

This formation of products obeys t,hese laws:

2. Ifa = o and b = ¥, then ab = g'b. {“If equals are
multiplied by equalg, the produc‘bs are equal.”’)

© 3. ab = ba. (Commutative law)

4. (ab)e = albe). ( fative law.)

5 (a4 b = ac + b\ Distributive law.)

6. Ifa < b, and 6} 0 then ac < be. (Monotonic law.)

The four “rules"ef sign” and, as a supplement to them, the
result that + ;"

A a0 = 0 for every number a,

follow 4 the simplest fashion, but certainly as demonstrable
facts,ﬁmn the fundamental laws enumerated thus far. The four
m{ea of sign assert, in particular, that

PN

\‘: fas0andb 5= 0, then ab = 0.

From this and the preceding result follows the important
.TH'FJOBEM. A product of fwo numbers is equal fo zero if, and
only if, at-least one of the two factors is equal to zero.

3We need not assume that this number z be uniquely determined by a

al::rd i’I 28 it follows easily from the remaining fundamental laws; in particu-
5.



V. FUNDAMENTAL LAW OF DIVIRION

The inverse of multiplication can, except in one case, always be
performed; .., of a and b are numbers, the first of which is not
equal to zero, there exisis a number® z such that axz = b.
~ The number # thus determined is called the guotient of b and

a, and; is denoted by b/a.

All these laws can be deduced very easily from the most
elementary properties of the natural numbers. Now, the.i
portance of listing them is this: Once the validity of th&e
fundamental laws has been established, it is unnecessary, i all
further work with the literal quantities 4, b, ..., to make use
again of the fact that these symbols denote rational fumbers. All
further rules of operation can be inferred purely, formally,® with
complete rigor, from the validity of the fundafiental laws alone.
Such rules have already been mentioned IV, They include,
in addition, all so-called rules of parenﬂm}ss the manipulation
of equalities and inequalities, in shorb, all rules of the so-called
literal ealeulus, inte which we shall, of course, not enter further
here. ™

From the important fact that the meaning of the hteral Sym-
bols need not be conmderﬁd at all in this connection, there
results immediately thedollowing extraordinarily significant con-
sequence: If ore has. 4ny other entities whatsoever besides the
rational numbers,<-we shall mention such other entities pres-
ently,—but which "obey the same fundamental laws, one can
operate mtkthem as with the rational numbers, according to
exactly the same rules. Every system of objects for which this
is truesig‘ealled a number sysiem, because, in a few words, it is
cusqfa}pﬁry to call all those objects numbers with which one can
operate according to the fundamental laws we have listed.

.. (" Buch other entities which also obey all our fundamental laws

) are, in particular, the real numbers. We recall briefly how one
arrives at them. The system of rational numbers is incomplete
in the sense that it is incapable of satisfving very simple de-
mands. Thus, ag is well known, there iz no rational number

- ‘Here, aa in the case of subtraction, x is uniguely determined by « and 5.
5L.e., without having to consider the meaning of the symbols. -
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whose square is equal to 2. The fact that a rational number
exists whose square is as close to 2 (grester or Jess than) as one
pleases, together with the familiar representation of the state
of affairs on a number axis {see £3 for further details), leads
one to divide all rational pumbers into two classes: a class 2,
which contains zero, the negative rational numbers, and every
positive rational number whose square is less than 2; and a
class %', which contains every positive rational number whose
square is greater than 2. The “irrational” number whose square\\
is equal to 2 is said to be realized by means of this clasmﬁcat;onh
or this Dedekind cut, (|, in the domain of rational numbers,
and one actuslly writes {A[A"} = V2.

That such a Dedekind cut really defines a numbenbr éven is
a number ean be proved only in the following- )sna.nner One
considers the fotality of all conceivable divisions of the rational
numbers into two (non-empty) classes A and{!l’ which, as above,
satisfly the requirement that every number of the class U be less
than every number of the class W', Then oﬁe shows that these Dede-
kind cuts (¥|W) are such “other ent1t1es” which, when suitable
stipulations are made as to the meanings of the symbols =,
<, +, and -, again satisfy:fgﬂl'our fundamental laws. How
these stipulations are $o be chosen and how the proof in question
can be furnished will not be considered here, but will be re-
garded as familiar $octhe reader.® The way to proceed is obvious
when the matter i3 viewed on the pumber axis. If one now
denotes these cuis for brevity by small Roman letters, sets
(AH) = aéte., and calls them numbers, then under these
agreements\s?ll our fundamenta} laws hold without exception.
The en@mes obtained in this manner therefore are numbers.
They, in their totality, constitute the system of real numbers.
:When they are represented on the number axis, it turns out
“\that some of the real numbers coincide with the hitherto

existing rational numbers, and some do not. In this sense the
system of real numbers is an exlension of the system of rational

numbers. Those real numbers which are not rational are called
irrafional. :

sConsult the works of the present author, or of Perron Hardy (Ch. 1),
or Bromwich (App. 1), listed on p. 136.
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With the construetion of the system of real numbers, a certain
closure is now attained. ¥or, it 1s possible to show that no
different system {distinet, in any essential respect, from the
acquired system of real numbers), and no more extensive.sys-
tem, of any entities whatsoever, exists, which satisfies all our
fundamental laws—no matter how the meanings of the symbols

y <, +, and  be defined. The theorems indieated herewith
are known as the wniqueness theorem and the completeness,
theorem, respectively, for the system of real numbers. A\

A renewed elassifieation in the system of real numberg \in-
stead of giving rise to new entities, always leads to ansalready
ex1stmg real number. Thus, if one makes another Dedekind cut
in the domain of real numbers, i.e., if one divides-al real num~
bers into two (nom-empty) classes ¥ and ¥’ stich that every
number a of ¥ is less than every numbersalNof ', then the
following theorem of conlinuity for the mumbers, often called
the fundamental theorem of Dedekind, can ®e proved:

TarEorREM. Such ¢ Dedekind cul *a'qz.\&é domain of real nmumbers
always defines one, and only one, real‘number, s, the “cut-number,”
such that every a = s, every o Ea

The cut-number, s, iiself may ‘belong to N or to W, depending
on the classificatory mewpmnt " Bvery number less than s, however,
belongs o ¥, every nuﬁ@n’ greater than 8, te 3.

3. Pbints and vectors of the plene

In what follt):ws, we require only the simplest and most
familiar of théfundamental concepta of analytic geometry, and
we theref&e confine ourselves to the presentation of those
prine fes which are of greatest importance for its erection.

First, the rational numbers may be represented in the well-
kpown manner by points of & number axis, i.e., an arbitrary
“\&traight line (imagined horizontal} on which two distinct points
0 and U have been chosen as origin and unit point, or, briefly,
as ¢ and 1, respectively, 1 to the right of 0. In this way, the
fact that the rational numbers form an ordered set becomes
graphically clear.

The considerations contained in §2 now show that to every
rational number there corresponds precisely one point—we call
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it, for brevity, & rational point,—but that not every point of the
straight Jine is the image of s rational number. To every Dede-
kind cut in the domain of rational numbers, however, there
corresponds a cut in the set of rational points: the latter arc
divided into two (non-empty) classes ¥ and %’ such that every
point @ of % lies to the left of every point o of ¥'. Intuition is
imperative here, and demands that there alwsys exist a point
s on the line; which separates the two classes, i.e., which is suci} "
that ¢ £ s £ o for all o and o’. The explicit recognition of this\
fact forms the content of the ' ¢\

Canror-DEpERIND AXtoM. Bvery cut in the domain (0f rd-
tional poinis defines o unigue point of the siraight ling, which
separates the fwo classes of the cul. X NI

This mesans merely that to every real nurober'there corre-
sponds precisely one point of the straight line'as its image, and
conversely. In this sense the system of regh numbers i in one-
to-one correspondence with the points of thie number axis. Con-
sidering this correspondence, the theorem’of continuity stated at

“the end of §2 says the following: . .~

If all poinis of the number azig.ore divided in any manner into
two non-emply classes such thcsi ‘every point of the first class lies
to the left of every point of the second class, then there 15 alwoys

. precisely one point which Separates the fwo classes.

This correspondqr@’s. between the real numbers and the points
of a straight linesis the foundation of analytic geometry. Instead
of representingythe real numbers by means of the points of the
number axi§, it is sometimes more advantageous to represent
them by:n}éhm of the directed segments, the vecfors, on this
line. Theimage of the real number 4 is taken to be the directed
segmient extending from O to the point ¢, or any other segment
avng the same lengih and the same direction. Conversely, the

“tumber o is called the coordinate of the vector representing it.
Imagine an arrowhead to be marked on the segment at a; and
a feather, at 0. Then the veetors representing positive numbers
point to the right, and those representing negative numbers
point to the left. To the number O corresponds the null vector,
which hag no length and no direction.

- Whereas the correspondence between the real numbers and
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the points of a straight line affords a particularly vivid graphieal
illustration of the order of the real numbers, the representation
of these numbers by vectors is better adapted to illustrate the
fundamental operations. To addition corresponds o suitable
jorneng of vectors {cf. p. 10 and §7). The difference b — a is
represented by the vector which extends from the point & to
the point b. The multiplication of a by the positive number b
signifies the sfrefching, in the ratio 1: b, of the vector cor

sponding to the point a. If b is negative, the direction of ¢ the
vector obtained is reversed besides, Division is represenmd n a

corresponding manner. O
o
prL £ O
2
4 '1(,\ -
O
FIGURE 1

No new fundamental conmderatmns are required now to pro-
cead to the foundations of ‘analytic geometry of the plane: We
lay down fwo strmgh’b\\ﬁnes or azes in the plane, of which the
second results frgm" the first by rotating the latter about the
origin in the maihematically positive, i.e., counterclockwise, sense,
through a.right angle. A point P of the plane is then uniquely
determm%l by its respeetive (perpendicular) projections P'and
P" onethe first and second axes (cf. Fig. 1), these projections, .
in tﬁn,"are uniquely determined by their respective coordinates
vand y. To every point thus corresponds precisely one ordered

:'hmnberupmr (z, ¥), i.e., a pair of numbers whose order of suc-

‘,l

cession must be taken into account,—and, conversely, to every
such number-pair corresponds precisely one point.

- In this sense, then, the totality of all points of our plane is
furnished by the totality of all number pairs (z, ¥), and the
latter represented by the former. As is well known, the pair of
numbers z, ¥ are called the (rectangular) Carlesian coordinates
of the point represented.



i0 -

For application it is useful in the plane—to s much greater
degree than on the line—to consider, in addition to points,
vectors, ie., directed segments. Two directed segments (we
again imagine the direction to be indicated by means of arrow-
head and feather) are said to represent the same vector, if they
have the same length and the same direction, disregarding
position in the plane in all other respects. Such vectors are
denoted by small German letters: @, b, ...; they are called

two-dimensional, as opposed to the one-dimensional vectors pre-
viously introduced on the line. R A

If a vector a is projected on the two axes, we obtain on esil
of them a {one-dimensional} vector; these are termed the“sgin-
" ponents of a. Each represents {on its axis) a real number; to-
gother they are the coordinates of a. To every vectox thus corre-
sponds an (ordered) pair of numbers, (z, ). Sinep, conversely,
to every such number pair corresponds a {(One-dimensional)
veetor on each of the axes, and, working'b‘agk{{rards, these two
can be regarded as the projections of précisely one veetor a of
the plane, we are able to say: The totality of all vectors of the
plane is furnished by the totality gﬁ»é:ll"number pairs {z, ¥}, and
the latter represented by the former. To the number pair (0, 0)
corresponds the null vector, which has no length and no direction.
H all vectors of the planqa;né imagined to issue from one and
the same point, they aig called coinitial. If, in particular, they
emanate from the origin (0, 0), they are called radsi vectores.
The tip of the raid\ius vector {z, y) then obviously lies just at
the point (z, y)\ﬁg )

FIGURE 2a FIGURE 2b

" Everyone w:hQ 8 familiar with the parallelogram of forces
knows how to join two vectors a and b, Le., lay the initial point
of the second on the terminal point of the first. The vector ¢
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which extends from the tail of the first to the head of the second
(see Fig. 2a) then represents the resultant of the forces signified
by the first two vectors.” We speak here of geomeiric or vector
addition, and write, for brevity,

a+ b =1

If {a, &), (b, V'), {e, ¢) are the respective pairs of coordinates
of these three vectors, then, as is well known,

a+b=c d+¥=¢ OB
P WV
/9{ ok
5 LC
FIGURE 3 \
N

In addition to Caftesian coordindigs, we use in the plane
what are known as polar coordg’qa‘{ﬁ&: A point P of the plane
uniquely determines its '(nogené'gative) distance p from the
origin and, substantially uniguely, the vectorial angle ¢ of the
ray extending from the origin of coordinates, O, toward P; so
that P can also be represented by the number pair (p, ¢) (see
Fig. 3). By the yectorial angle of a ray is meant that angle
(measured, of eoﬁr}e, in radians) through which the direction
of the first colirdinate axis must be turned in order that it
acquire thehdirection of the ray. Complete rotations in either
direction/may be neglected here, i.e., arbitrary integral multiples
of ?m\may be added to, or subtracted from, the angle thus
fopna.\ The second polar coordinate is thus infinitely multiple-
Aaliled, but uniquely determined “mod 2r.” That one of the

\infinitely many values of the same which satisfies the condition
—r < ¢ £ + ris ealled its principal velue. In general, two
angles ¢ and ¢ are already cslled equal, in symbols: ¢ = ¢, if
they are congruent mod 27.

10r, let ¢ and & issue from the same point; ¢, then, is the diagonal of the
parallelogram determined by a and 3, which emanates from this point
{see Fig. 2b).
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“Thie polar coordinates p, ¢ and the Cartesian coordinates z, y
of ope and the same point, distinet from (0, 0), are related by
. the formulas® -

' (1) p=V 175_-!- ¥, 005'? = \/x—_’im-i-—;’ sin p = \/—x-j—_y

@ z=pesy, y=psine

_ In addition to these few fundamental matters, we shall use ° Q
only the most familiar facts of analytic geometry of the plane® \

" and space, concerning the straight line, the circle, and th}s ”
sphere, and make use of somewhat more advanced matenal in

. Iapphcatmna and examples at the most. \\

*The first of the formulas (1) and the formulas (2) obmns\y hold also
for (z, 3) = {0, 0}, i.e, for p = 0 and arbitrary o. \Y



CHAPTER II

THE SYSTEM OF COMPLEX NUMBERS
AND THE GAUSSIAN PLANE OF NUMBERS

4. Historical remarks

The fact that there exists no rational number whose square
ls equal to 2, that, in other words, the quadratic equa.tlon
#* — 2 = 0 has no solution in the system of rational numbers
and many similar facts, have led to the extension of thls system
to that of the real numbers. For practical apphcmt)on however,
the impossibility mentioned was not of great\:mportance, be-~
cause there exist rationsl numbers whosé\B(uares are at least
nearly (and, indeed, as nearly as one p@ases) equal to 2. The
sntuatlon is entirely different for the ‘equation «° + 2 = 0 or,
say, x° — 10z + 40 = 0. Here th e i3 no real number z, elther
rational or irrstional, which even”‘nearly” satisfies the equa-
tion. Such deeper unposmbljthes were noticed early, but Giro-
lamo Cardane first made wnitial step toward removmg them.?
He is led to consider the last-named equation in connection
with the problem of dxwdmg the mumber 10 into two parts go
that their produ ﬁhall equal 40. He solves it according to the
familiar rule wbﬁi was already generally known at that time,
and ob’oams ﬁm (at first quite meaningless) expressions

5+v~—1 and b— v—15

as f,wc solutions. He notes, however, that <f one operates
) hese expressions just as with ordinary real numbers, then,
"{fn&eed, the sum of the two equals 10 and their product equals 40,
~\.J Similar cases were subsequently encountered very frequently;
’ cases, namely, in which one was led, by “formally” correct
calculation,'® to consider expressions containing square roots of
negative numbers and yet satisfying, at least “formally,” the
’G. Cardano, Artis magnae, sive de Requlis algebraicis liber unus, . . .,
Nuremberg, 1545, ch. 37.
1} p., calenlation aceording to the rules applying to real numbers,
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conditions of the problem in question. Such expressions were
then designated 2s imaginary, i.e., imagined or unreal, num-
bers.”® The most famous example is “Cardan’s formulas” for
the solution of eubie equstions, which, in the case in which the
equation possesses three real roots, expresses these roots in the
indicated “meaningless” form. Indeed, it turned out, that opera-
tion with these “meaningless’” expressions cowld very often

produce valuable “real” results: some known ones, by a much .

shorter route; some new ones; which required considerable time A\
before they could be proved by the customary real method)

Often, too, it enabled one to give a more satisfactory fofni to

results already known. One of the most beautiful examples of

the latter kind of result is the fundamental theorem? p‘f\algebra,

" which asserts that every entire rational functigh'can be ex-
pressed as the product of as many factors of theMirst degree as
its degree indicates. Whereas this theore;n'ié~'hot always true
(as the above quadratic equation already- shows) if one employs
only the real numbers, it becomes ‘fermally” correct if one
also permits those “meaningless’,\expressions to appear in
factors. An example of the other\kind of result is afforded by
the expressions for cos nx and$ih nz in terms of powers of cos
@ and sin x (see §11), which are obtained very quickly if one
makes use unhesitatingb(\of roots of negative numbers, but
which can be proved by-a “purely real” method only in a much
more laborious thanner. Thus it came about, that roots of
negative nmnbe\rsl were not simply rejected, but, on the contrary,
were made Usé of to an ever-increasing extent and with ever
greater sucesss; despite the fact that one was unable to assign

_any.(%ih?ct meaning 10 them, so that their use remained mys-
terigu® and unsatisfying. Most of the things diseussed in this

Wlitt;le volume were discovered already toward the close of the
17th, and in the course of the 18th, century, especially by L.
Euler (1707-1783). But not until the turn of the 18th century
did one begin to see clearly here. A memoir of the surveyor

"This designation has been employed since the middle of the 17th
century. As opposed to these numbers, ali ordinary numbers were called
real numbers. Such an opposition of real and imaginary is found probably
for the first time in the famous Géométrie of Descartes {Leyden, 1637).
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Caspar Wessel, dating from the year 1797, and likewise one of
J. R. Argand, dating from 1806, which gave a solution of the
mystery, at first received no notice. Similar essays of several
other mathematicians fared no differently. Only after €. F.
Gauss developed,” in 1831, the same interpretations, inde-
pendently of his predecessors, had the time become ripe for a
full understanding of these things. Within a short time, owing
especially to the purely arithmetically treated presentation of
W. E. Hamillon in the year 1837,—the works of the previou\s{y
named mathematicians presented matters in geometric gaxb,~—
everything mysterious and obscure about these “‘meahinigless
expressions” had vanished. Today, due to a clarified attitude
toward the foundations of our science, they oﬂe{i'\ no ideal or
actual difficylties whatsoever. &

5. Introduction of complex numberd." Notation

N

The system of real numbers proved’tb be in many respects,
much more efficient than the systam of rational numbers,
especially in application to geomeftic questions (see §3): The
system of real numbers can be’apped in a one-to-one manner
on the points or vectors of\a ‘straight line, and .the operations
on the real numbers can be interpreted as operations on the
points or vectors of the'straight line. This interprefation urges
one, as it were, t;}\'h}tempt, with the new impossibilities dis-
cussed in §4 in” &iﬁd, to define a set of operations for the
points and vegters of the plane (see §3), and in this way create
a system of €lements o which the deficiencies of the system of
real nundhers no longer adhere. Aceording to §3, such an attempt
is equivalent to trying to define a set of operations for number
pa,ir%'.il‘he first takes place in the language and represeniations
of geometry; the second, in those of arithmetic. In what follows,
™ e shall always employ both, side by side, putting the arithmetic
" interpretation foremost for ail fundamental concepts and defini-
tions because of its logical purity, while using the geometric
form to facilitate comprehension and the acquirement of a

general view through its infuitive power,
QC, F. Gauss, Géttingische gelehrte Anzeigen, April 23, 1831; Werke,

vol. 2, pp. 167-178.
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We consider, then, the totality of all ordered pairs made up
of two real numbers: (o, &'), (8, @), . . . .*® Visually interpreted,
we consider the totality of all points, or that of all vectors, of a
plane provided with a pair of coordinate axes in accordance
with §3. It will turn out that we shall be able, under suitable
agreements as t0-the meaning of equality and inequality, addi-
tion and multiplication, to operate with these entities; and in
fact, in essentislly the very same manner as with real numbers{
We shall see, in other words, that these entities can be regaltdéi
as numbers (see §2, p. 5). Reserving the proof of this_fér-the
immediately succeeding paragraphs, we shall now already call
them numbers, more particularly: complex numbers.'\We denote
them by small Roman letters, setting, say, g o>

(@ &) = o, (8,8) = b,.

and shall at the same time employ a, b, ‘\\as symbols for the
points or vectors of the plane which-xepresent the respective
number pairs (e, '), (8, 8, . ... This, complex numbers are
nothing but ordered pairs of real numbers, or points or vectors
of the plane, for which an equality, an addition, and a multi-
plication have been deﬁned:ih'a definite manner {(amplified in
§§6-8). The plane in which we imagine these points and vectors
to be drawn is calledthe plane of complex numbers, also the
Gaussian number-lane, or, briefly, the complex plane.

For historicabredsons, and because of connections which the
following paragraphs will reveal more exactly, we designate the
first of the ’“tw?m {Cartesian) coordinates of the point ¢ 88 the

real pq:rt;}he second, as the imaginary part, of the complex
nuraber-e, and, accordingly, write

I Ra) =a, Ya) = a

“\'We correspondingly designate the first of the two coordinate
axes as the axis of reals, the second, ag the axis of maginaries;
and also distinguish their halves into positive and negative half-
azes. Bach of the axes divides the plane into two half-planes,
B3ince we wish to reserve small Roman letters a, &, .

numbers now to be ereated, real numbers will he den
letters in this and the following paragraphs to §15.

- . for the complex
oted by small Greel

e e e e e
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which are called, in virtue of their position, upper and lower,
left and right, half-planes, respectively. The origin of coordinates,
i.e., the point or the number pair (0, 0), or the null vector, is
called, briefly, the point O of the plane, or simply the origin.
Those complex numbers whose representative points lie on the
axis of reals, and whose vectors, consequently, are parallel to
it, are called, for brevity, real; all the remaining ones, ot real
or non-real; those for which the representative points lie on the
axis of imaginaries (or whose vectors are parallel to it) are cal@
pure imaginary.™* AN
The first of the two polar coordinates (introduced in-accord-
anve with §3) of the point a, or, in other words, the lfength of
the vector a, which we shall denote by p, 8 callg@ﬁé modulus
or the absolute value of the complex number @ the gecond, ¢,
which gives the direction of the vector g, is ealled its amplitude;”

in symbols: Y,
(2) la] =5,  amas v

The amplitude of a complex nqn;'ﬁer is thus infinitely multiple-
valued, just as the second polaricoordinate. All its values, how-
ever, differ only by integral multiples of 2x: they are “con-
gruent to one another mod 2z.” That value of the amplitude
which satisfies the efmdition —# < ¢ £ + = is called the
principal value of the 'amplitude of a. Two complex numbers are
gaid to have the same amplitude if the two amplitudes are con~
gruent mod»2w, or, in other words, if their principal values
coincide. (Thé absolute value of & complex number is a real,
non—negﬁtfve number; it is equal to zero only’ if the complex
nupiber in question is (0, 0), i.e., zero. For this number, the
amplitude is regarded as undefined or indeterminate.

# The connection between the Cartesian eoordinates (w, ') and
* the polar coordinates p, ¢ of & complex number ¢ different from
(0, 0) is given, according to §3, by the formulas™

HAg we have already remarked, these last designations will become
more understandable through the considerations of §10.

1¥T'he term argument is alse in use; in symbols: arg a = .

(Y, p. 12, footnote 8.
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If two complex numbers differ only in th&sign of the second
{Cartesian or polar) coordinate, they aré ealled complex conju-
gates, or simply conjugaies, of one apéther. The corresponding
points lie symmetric with respect talthe axis of reals (see Fig, 5).
If one of them is called g, the qther 1s commonly denoted by @
If they differ in the sign of bafh'Cartesian coordinates, they are
called megatives of one angther. If one of them is called e, the
other is denoted by —a\The corresponding points lie 8ym-
metric with respect 4d.the origin (see Fig. 6); the vectors are
parallel and equaldn length, but have opposite directions.

N4
Ry,
7.y
?\\ [ /4
N <,
e \ W & -
\} a a
¥IGURE 5 FIGURE §

The task of the next few paragraphs will be, to demonstrate
that the entities which we have spoken of here are numbers in
the sense of §2. The last considerations of this same §2, however,
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would seem, in principle, to make such a proof impnssible. For
there we asserted the system of real numbers to be (essentially)
the only system of entities with which one can operate so that
thereby all the fundamental laws of arithmetic listed in §2 are
valid. This is, of course, true. Yet we shall see that, after
making a single minor modification of the fundamental laws,
that proof can be furnished. This modification will consist in
not demanding any longer, in the fundamental laws of order,
that between every pair of our complex numbers always\One
of the three relations <, =, > hold, but requiring ogiljr Jthat
there subsist between them one of the fwo relations €)%<, The
order of the complex numbers is thus different in principle from
that of the real numbers. We shall then show :ﬂﬁt under suit-
able agreements regarding equality, additipn) and multiplica-
tion, our number pairs obey all the fundameéntal laws of arith-
metic, provided that those laws in whieh one of the symbols
<, > appears is modified in thefhatiner now prescribed, or
suppressed. It is therefore justified, and also customary, to
designate these number pairg) likewiss, as numbers. To dis-
tinguish them from the hiphé:rto existing real numbers, however,
we call them complex numbérs.

QQEquality and inequality
The equalitk ﬁf"{i,wo complex numbers is, naturally, defined
by means of\the coincidence of the representative points or
vectors:y, ()"
Depuution. The complex numbers a = (a,e’) and b = (8,87
ar¢_talted equal, wn symbols: a = b, if simultaneously
',{\ o = ﬁ aﬂd a! — ﬁ!‘

NG

O They are, accordingly, called unequal, in symbols: a = b, if

either o #f o o A
{or both).
The fundamental laws I, 2 to I, 4 obviously are valid in
virtue of this definition.'” I, 1 now reads more simply:

1"When we use the w.ord 4ghvicusly” here and in the following, we mean,
of course, that the proof of the assertion is so simple that we may leave it
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If @ and b are any two numbers, they satisfy precisely one of
the relations

I, 1) " a=b a#b

Relation I, 5 (the transitivity of the relation <) is lost, however;
for from a % b and b > ¢ need not follow a # ¢.**

7. Addition and subtraction

The way. to add two number pairs is suggested by the diagram\(
of the parallelogram of forces: A

DEFINtTION. By the sum of two complex numbers a =;’§‘é,c€")
and b = (8,8") we shall mean the complex number N
| c= (B +BY; D
in symbols: _ \
' a4b=c ’

The formation of the sum of ¢ and b is ill;ﬁ\sifrated graphically
(ef. vector addition in §3) esther by jaiuing the vectors a and b,
i.e., placing the initial point of b on the terminal point of .4, —
the sum ¢ is then the vector whieh' extends from the initial
point of ¢ to the terminal point of b (Fig. 7a),—or by let-
ting ¢ and b issue from a. ﬁgiminon’ point, in which case the
sum ¢ ig that diagonal o{ the parallelogram determined by a
and b, which emanatgg from this point (Fig. 7b).

~

e
\ Yy FIGURE 7a

FIGURE 7b

to the reader, It is strongly recommended,
out carefully each such demonstration,

1, 5 eould, 2t the most, be retained in the form: “If ¢ = band b = ‘g,

then a = c,” but the truth of thig assertion is already a consequence {indi-
rectly) of I, 3 and 4. -

however, that he actually carry
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The fundamental laws II, 1 and 2 are certainly satisfied in
view of this definition. That II, 3 and 4 are also satisfied™
follows immediately from the definition, because these laws hold
for each of the two constituents of a number pair taken sepa-
rately. It follows also just as transparently from the geometric
addition of the representative vectors. The va.hdlty of law 11, 5,
which now takes the form:

(11, 5) If @ b, then invariably @ + ¢ # b 4 ¢,—‘results/n
an equally simple manner. o , A\

Fundamental law ITI of subtraction is also satlsfﬁe'& ;For,
given a and b, the complex number {8 — a, / — Y obvicusly
accomplishes what is required of & in III. Hence ‘the di fference
b — @ is understood to be the number (“

b—a= (ﬁ—a,B _\a')‘

If we allow the vectors ¢ and b to isst@'from & common point,
the difference b — a is represent‘ed by the vector extending
from the tip of & to the tlp of b (Flg Ra). If we use the points

¢ ‘ﬁGURE 8a FIGURE 8b

~b ‘then b — a is represented, by the vector extending from
af %05, i.e., from the subtrahend to the minuend (Fig. 8b). In
\partlcular,

N

O b—a| or la—bl,
accordingly, means simply the distance between the two points
a and b. That (now necessarily existent) complex number which,

®In TT, 4 and 5, ¢ now, of course, denotes an arbitrary, third complex

number.
2This follows also from IT, 2 and IIL
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when employed as addend in the operation of addition, produces
no change, is obviously the number (0, 0). We therefore call
it zero (cf. what was said in §5), and denote it briefly by 0.
"The point which represents it is the origin of coordinates, the
representative vector is the null veetor. Now, further, 0 — a
or —a, signifies the vector which extends from the point a to 0;

it therefore has the same length as a, but the opposite direction.
Consequently, the complex number —a i8 the negative of a, A
which is in agreement with what has already been said in ,§:5'.\

8. Multiplication and division

It would seem natural to consider, in analogy wit,p@h’“.deﬁni-
tion of addition, the product of the number pairs (&, o) and
(8, 8 to be the number pair (af, o/8"). Thig\multiplication
would, in fact, satisfy the fundamental la.w,Q‘IY, 1 to0 5, but not
fundamental law 6, which here wust read: <

O
(IV, 6) If o » b and ¢ 5 0, then ac@ be.™

Thus, unfortunately, multipli{;at’ijzin‘ of number pairs cannot be
defined in so simple a manner, The historical development (see
§4), however, led early to a definition of multiplication which
satisfies all the fundamental laws IV and V, and which can be
shown to be essenj;i@i{f the only one possessing this property.

DeriNtTIoN, { The product of two complex numbers a = (a,a’)
and b = (.8:,;8"9 shall be understood to be the complex number
D7 = (aB— o, of + oB);

i sy@oﬁ;:
R\

\:\ That the multiplication so defined satisfies the fundamental
"laws 1V, 1 to 3, is immediately evident. The laws TV, 4 and 5
are also verified, but the proof of this requires a little caleula-

ab=c¢ or ah = ¢

#For, take & = {a, 0), b = (8,0}, witha = 8, and ¢ = (0, v), with v = 0.
Then the products ac and be formed according to the above rule would
both be equal to (0, 0), and henee, 1o each other, This example shows, at

the same time, that, with this definition, the “theorem’ to be proved next
would be false.
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tion. We demonstrate it for IV, 4: Let ¢ = (v, v') be an arbitrary,
third complex number. Then

(ab)e = (a8 — &'F, aB’ + o'BY(v, ¥
= (alfy — §¥'] — «[B8Y" + £7],
alpy + Byl + o'lBy — BY'D-

For a(bc), on the other hand, we find the number pair
(lBy — B'v'] — «'[8y + B, olfy + 8] + o' [By ~ B7'Dey
Since laws IV hold for the real numbers a, 8, ..., the :tﬁm
number pairs obtained are indeed the same. The proof 6£1V, 5
is entirely similar, and we leave it to the reader. (™

It is now easy to see that our multip]jcatiog;l&so satisfies
law 1V, 6 in the modified form™ (see above}{Bihce it can be
stated in the form “If b — @ 5= 0 and ¢ #°0, then (b — a)
¢ # 0", it is obviously contained in the, following

Tugorem. A product of two complet pumbers s equal fo zero
if, and only if, at least one of the twpéja}:tors is equal lo zero.

In fact, if @ # 0, but ab = Q,%heén, of necessity, b = 0. For,
ab = 0 mesans, if a = (e, aYland b = (8, 8, that the two
equations N\

af — a'ﬁ";ﬁj\\.ﬂ and of +aBf=0

¢ L\
hold. Tf we multibly the first of these by «, the second, by </,
and add them, we obtain
O (o + a8 = 0.
But aiq'é}é‘the very meaning of a # 0 is, that the real number
o F. ' 5 0, and since our theorem is true for real numbers
kéé"§2, IV, Theorem), it follows that we must have § = 0.
“\BY eliminating g, it is found, in an entirely analogous manner,
N\ ‘that & = 0 too; and, consequently, b = 0.—That, conversely,
ab = 0 if a or b is equal to 0, follows immediately from the
definition of multiplication.
The multiplication specified by the definition thus satisfies all
the fundamental laws IV. A calculation gimilar to the one just
2This follows also from IV, 2 and V.
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carried out shows, further, that fundamental law V iz also
fulfilled: o

Let @ = (o, o) # 0and b = (8, §) be given arbitrarily.
Then V asserts the existence of a complex number z = (£, )
for which gz = b, i.e.,

(af — ¥, o + o) = (8, 8),

or

ot —a¥ =8 and of+af =8 &

Solvmg these equations simultaneously for £ and ¥, we tham,
gince of + o® # 0:

aﬁ-l-a’ﬂ’ ;o '—a’ﬂ\
o+ % &= a + a{
The number pair z composed of these numbers E, ¢’ then satisfies
law V, and, consequently, furnishes thB\ quotient, b/a, of the
W0 complex numbers b and @, prO\Qded that a # 0.

We shall not diseuss the geomef.m‘c represeniation of multi-
plication and division until we have become aequainted, in §11,
with the trigonometric representatlon of complex numbers.

9. Derwed rules. Powers

Through the coglsid}:rations of §§6-8, we have now supplied
the demonstratiﬂﬁ, -demanded in §5, of the following fact: If
the number pairs; or, what amounts to the same, the points or
" the vectars; of“the plane, are denoted briefly by small Roman
letters, d are called simply numbers; and if, further, equality,
add1t1qn, and multiplication are defined as we have defined

eﬁs:" then all fundamental laws of arithmetic in which only
1;};1}3 equality sign appears remain valid without exception. Of

£ =

. \ the remaining laws, some become meaningless, some must be
) slightly altered in form,

From this it follows (cf., in this connection, the details given
in §2), quite mechanically, that all further rules of the ordinary
literal caleulus, in which only the equality sign appears, remain
valid without further ado, if the lettors now denote complex
numbers. We say briefly: We may operate formally with complex
numbers the same as with real numbers. A correct literal caleulus
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“in the real domain,” in which only equalities oceur, remains
valid also “in the complex domain.” In operating with in-
equalities, however, it is to be noted that law I, 5 has dropped
out, and that I, 1 as well as II, 5 and 1V, 6 must be modified
in the manner agreed upon.

As the simplest examples, we stress, above all, the operafzon
with powers and the validity of the binomial theorem: If a is an
arbitrary complex number, and # is & natural number, then the
product of n factors, all equal to g, is denoted, as in the re\}ﬁ
domain, by ¢". And the same conmderatlons as there lead“gne,
in case the base a 5 0, to understand by a° the numbp}"l “and
by a " the value 1/a". According to these stipulationsy the power
a* is defined for every integral exponent k, and. (&r operatmg
with these powers we have the three rules \ &

a-a = o (@®) = o, a Mg (ab)*,

where the base 0 may appear only if the \xponent i8 positive.
If ¢ and b are two arbitrary coxﬁplex numbers, and if n is a
natural number, then

%

@+ (n)ab‘i“ F(MNey

X

w={

(a + &)

i

The fundament\l operations addition, subtraction, multi-
plieation, and! division are named the four rational operations.
1t division’igiéxcluded, we speak of the integral rational opera-
tions. An‘expressmn which (as, e.g., the preceding one) is formed
from\any literal quantities and numbers by applying the
rati;‘(}al operations (a finite number of times} is therefore called

P rational expression, and, in particular, an iniegral rational ex-

/

“\“pression, if only the integral rational operations are employed.

10. The system of complex numbers as an extension of the
system of real numbers

On the basis of the historical development, which is reflected
in the terminology introduced in §5, it has been regarded as a
foregone conclusion that the system of complex numbers is an
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exlension of the system of real numbers. We have as yet to
clarify the extent to which this is the case. For, pairs of real
numbers are not themselves real numbers. Every number pair
(e, 0), however, whose second coordinate is equal to 0, whose
representative point consequently lies on the “axis of reals,”
appears, nevertheless, to be actually a real number in a certain
sense. What does this mean? Just this: If every number pair
(e, 0) is written in abbreviated form simply as «, then one

verifies immediately, that every ealeulation which proceeds ac-.

cording to the rules laid down for operating with number pairs,

and which employs number pairs exclusively of the form (QRO);.:

goes over into a correct ealculation with real numbers. In fact,
equality, sum, and product of two such pairs (a, 0) aﬂ\d B, 0)
thereby go over, respectively, into equality, sum, product
of « and 8; and that suffices. This is expressed%y saying:
The subsystem of all mumber pairs (&, 0) is %8omorphic, with
respect to the operations of addition and méalsiplication, to the
system of all real numbers, For this reasen, we may actually set

(o, 0} =
and, without hesitation, regard tha palr {a, 0) as identical with
the real number «.
But then we may set (Qk ") = a'(0, 1}, because, according
to §8,
af(o} ]-)¥ (O‘ : 0) ' (0! 1} = (0, ).

And now an arlziﬁralry number pair can be represented in the
form &\

0.
:(g,.a") ={e,0) + (0, &) = a + &'(0, 1):
All number pairs can thus be represented in this form with the

e;gc{ﬁs‘i’ve use of the single number pair (0, 1). If, for abbrevia-
\'dtipn;,'awe replace this number pair by the letter i, as Euler first
id:

(0,- 1) = {,

#1n the memioir De formulis differentialibus . . . , which was presented to
the Bt. Petersburg Academy in 1777, but whlch was not published until
after Euler's death. A systematic use of the letter ¢ for the i 1magma.ry unit
wag first made by Gauss, who availed himself of the same since 1801,
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then we can write
{a, &) = & | &5,

and this representation is obviously fully unique. Finally, ac-
cording to §8,

D01 ={(-1,0=—1,
and so '
# = —1

Thus, our new number system contains numbers whose squg,re?\\
ave real and negative;—and likewise, as it will turn out, all‘the
remaining “impossibilities” mentioned in §4 have now turned
into realities. In this sense, then, it constitutes a{tousistent
extension of the system of real numbers, and, ind@él} one which
no longer possesses the deficiencies of the latteér, )

Since every complex number ¢ = (e, a')\cgm’be represented
in the form _ ‘\ v

g =« + (x"&xs

~N

the operations with complex nulp]?érs can also be regarded as
operations with sums of this farm, in which « and o are real
numbers, and  is a number sypabol for which £ ie., (0, 1) (0, 1),
is equal to —1. N '
The same goal—the rémioval of the deficiencies of the system
of real numbers by Mmeans of suitable extensions of the same,
consistent with ;h'e\fundamental laws—cannot be reached in
any (essentially)different manner; but we shall not go into this.

N .
11. Trigonometric representation of complex numbers

In k(hat precedes, we have used Cartesian coordinates to
represent points and vectors. If we take polar coordinates, some
things become simpler, others, less simple.

3 \“If p and ¢ are the polar coordinates of the point ¢ = {a, ',
then, according to §5,

a = pCos g, o' = psin e

The number ¢ = « + ot can therefore be represented in the
form

{1) a=pcosw+'ipsin¢p=p(cos¢+z'sin¢).
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This is called the trigonometric representation of a complex num-
ber. In antithesis to it, the representation ¢ = o 4+ «’i may be
designated as the Cartesian. In the latter, the real and imaginary
parts are displayed; in the former, absolute value and ampli-
tude. The last quantity appears only in the combination (cos
v + i s o); this factor is called the direction factor of the
complex number ¢. '

If we have two complex numbers

a=o+a’i = p(cose + isin ¢), O\

b=B+pi=o(cosy+isimy), O
then a = b if, and only if, p = o and, at the same tigte, b = ¢,
ie, ¢ = ¢ (mod 2. (¥

The sum and difference of ¢ and » cannot. be’ expressed so
simply with the use of the trigonometric representation. The
derivation of these expressions is recomnénded to the reader
as an exercise. Since, however, the vgt:i‘ar\s a, b and ¢ + b (see
Fig. Ta) form a triangle, the well-known theorem that the sum
of two sides of a triangle is at least’ equal to the third, yields
the important inequality NP

N

@ le +]5 [a] + 0],
which is called, for bre¥3¥, the triangle inequality. By the corre-
sponding theorem forsthe difference of two sides of a triangle,
the representation of the difference b — g in Fig. 8a yields the
further inequahty
R A LEEIES LT}
Mult'iQhﬁtion and division, on the other hand, become gimpler.
Filisti;'oaccording to §8, '
O ) ab = (a8 — o) + (a8 + o'B)i.
With the use of polar coordinates we ged

aff — o' = po(cos ¢ cos ¥ — sin ¢ sin ¥)
af’ + o'
80 that

P COS (ED + 'lb):
po sin (p + ),

I

po(cos psin ¢ + sin ¢ eos ¥)
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) ab = pofcos (¢ + ) + i8in (¢ + P

Thus, the absolute value of this product is equal to the product
of the absolute values of the factors, the amplitude of the
product is equal to the sum of the amplitudes of the factors;
in symbols:

L

(5) bab| = fal-|bl}, am ab = am a + am b.

T4 is shown in an entirely similar manner (or by starting from .

(b/a)-a = b, a ¥ 0), that, fora # 0, . A\
b . A,

©® o= Sleos (9 —¢) +isin (v — 9 (O

b| _ 13/ D am -
(7 el = al amb 'arr\a:,
Since | 1| = 1, and we can set am 1 = 0, we have, in particular,
\\«
(8 l -1 'a,m1 = '—éam a
) [af a7
11 N\
) e~ Ta (coma™ isin ¢).

Repeated application of-Siultiplication and division leads,
finally, to what is k.non'\és de Moivre's formula:

(1) a" = [p(cos,;aét;f 7 sin @)]" = p'(eos ng + 7 sin ne),

where n may be{dn arbitrary integer. From it we get, in partic-
ular, A\

(11) :"{g\Ta”] =laf, am (¢ = n(ama).™
I w ’%:féfke use of the binomial theorem, there follows, for
ppsiflive integral n:
m; “\’: . 1 n Y. s :
\,coano-i- 7 8in ne = cos'e + (1)1 cos” i SID ¢

- (;) cos™ " sine — (g)z cos” e sin’e +4—— -+ -

#Thedast is true in the sense that every value on the right is contained
among the values on the left; but in general there are more values on the

left than on the right.
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If we now separate real and imaginary parts, we obtain the
representation, mentioned in §4, of cos ne and sin ne in terms
of powers of cos ¢ and sin p.

12. Geomelric representation of multiplication and division

From the considerations of the preceding paragraph, thfare
follows, now, the very simple representation of multiplication
and division, If .

a=plcosp 4+ ising) and b = o(cosy + 7 sin ¥) N

issue from & common point, say 0, then from formulassﬁ«%) and
(6) there we read off the following construetions of the.Vectors
ab and b/q: PN

Rolate the vector b through the angle ¢ = amy ®%n the positive
sense,”” and strelch it in the ratio 1: p = N a | The new
veclor represents the product ab. X e\

If the vector b 1s rotated through the Qnggle"go in the negative sense
(v.e., through the angle — o in the pogitive sense), and siretched in
the ratio p: 1, we oblain the ﬂectqr.‘b/&:

"
$

. \§~ FIGURE 9 FIGURE 1(Q
N ?EWhe:T we speak of a rotakion through the angle o in the positive sense,
7\ bere and in what follows, this will invariably mean that the rotation is to
’ be made thmugh'the angle | ¢ | in the positive or negative senge, according

as the number ¢ is positive or negative,

.*‘W:hen we apeak of & strefching in the ratio ¥ : & (v, & real and positive),
this wilt a]wayslmean tl:Es.t the length of the old segment is to that of the
new, a5 y : §—irrespective of the relation >, = » < in which v stands to 5.

Thus, the word strefching is also employed when an actusl shrinking is
intended, or even no change at alf, )
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The following is merely a somewhat dlfferent form of this
construction:

Plot (see Fig. 9) the poinis 0, 1, @, and b. On the segment
extending from 0 to b, place a triangle which is direetly similar
to the triangle 0lq, in such a manner, that the segments ¢ . .
and 0...b become corresponding sides. Then the third vertex
of this triangle is the point ab.

If, however, we attach the triangle to 0...b so that the _
sides 0...a and O...b correspond to one another, then the, AN\
third vertex represents the quotient b/a. In particular, we find.))
the point 1/a, the reciprocal of a, by placing on the segnient

. 1 a triangle directly similar to Gla, in such a man; v, that
the segments 0...a and 0...1 become corresponding sides.
The third vertex of this tn&ngle furnishes the pon}b 1/6 (see
Fig. 11).

E@UBE 11

13. Inequalities ‘and absolute values. Examples

Of the fundam.gnta,l laws pertaining to inequalities, I, 5 has
dropped out, st the remaining three have acquired the simpli-
fied form, stated in §§6, 7, and 8.

These/miles are so sumple, that their application requires no
furthes. Q(pla,natwn On the other hand, we shall go somewhat
mQre Selosely into the mampulatmn of absolute values, since it
fs.made use of especially often in what follows. It rests essen-
tially on the three facts ascertained in the preceding paragraphs:

1. The absolute value } a | of a complex number a ts a real, non-
negative number, which 1s equal {o 0 if, and only if, a = 0.

1I. lab | =|al|b]
III. la+b]=|aj+[b]
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The proof of the last fact, the so-called iriangle inequality, was
carried out geometrically. It can be given analytically, as fol-
lows: The assertion is that for four arbitrary real numbers «,
o, 8, 8 we have invariably

Ve+ 8"+ +6Y sV +a” + VB +57

I we square twice, we find that this inequality is certainly
correct if the inequality &

A\
1) (af' — a'B)* 2 0 A

holds,-——and this last is surely the case. . O
From TI, or from the definition itself, it follows tl%t‘;
9\

|—al=laf 42
and then from III we obtain, further, ,
D
lal=1@+b +(~b)| < [6Fb|+ 0]
or _ S
le+blz|a'= 0.
Since ¢ and b may be intem}xﬁiigé&, there results, finally, the
somewhat sharper inequality ™

. o +BY 2 llaf - [b]]

to which the namé Iritingle inequality is likewise applied.

We close this\chapter with the presentation of a series of
simple applications which result from the agreements and
theorems 'Q{i.he preceding paragraphs and which are often used
in what-ollows, '

1. ~Ex0ﬁ1 the triangle inequality, by repeated application, fol-
lq?vig: Ha,,8,...,aareanyp complex numbers, then

AN _

\'\}~’|al+az+ —I-_a,,|§ |al|+jaz|+ R Iﬂn!-
The vector {a, + %+ - 4 ¢,) is found by joining the vectors
@, 8, ..., a In sUccession and then connecting the initial

point of the first with the terminal point of the last. For the
product, however, we have

iaxas---%l=laxl-fa-ai...ia,|.
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Since the absolute value | z | of a complex number” z repre-
sents its distance from the origin, and the absolute value
|2, — 2z, | of the difference of two numbers 2z, and z, represents
the distance between the corresponding points, the following
simple facts ensue:

2. If, for a complex number z, the absolute value [z| = 1,
then its image point lies on the so-called unii cércle, ve., the
cirele with radius 1 about the origin ag center. Conversely, »
| 2| = 1 for every point 2 on this circle. In this sense the equa-\
tion [z | = 1 can be regarded as the equation of the unit cirele:
1t is satisfied if, and only if, z lies on the unit circle. For{these,
and only these, 2, the trigonometric representation ha{tﬁe form

z = cos ¢ -+ ¢sin o \x\

X

3. Invariably (ie., for every complex num\bgr z‘)~,
%@ = |2] and | 3OTS s
\ \

For, the legs of a right triangle are nof'greater than its hypot-
enuse.
4. Asunder2,Hcisa givenwcomplex number, and p denotes
a real and positive nmnber,,fsﬁéii
Aa—al=0p

is the eguation of t}g‘ci‘rcle with radius p about the point a as
center: A number 2'satisfies this equation if, and only if, its
image point lies ion' the circle in guestion. .

5. Similad¥y 1z — a| < p, or |z — a| < p, is the equation
of the sw:)fak“of this cirele. In the first case, the circumference,
the boungdary of the circular surface, is counted with the latter,
in the'second, not. Inequalities such as

"sf‘:.\:I.z—a|gp, |z —a|>p e <fz—a|l <p

have an analogous, simple meaning. The last represents the
surface of the ring between the circles with radii p, and p, about
the point a as center, exclusive of the two boundaries.

2Tn the following, the letter z is often used to denote an arbitrary com-
plex number, while the letters g, b, . . . are reserved for definitely chosen
numbers.
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6. If ¢ is a given positive number, the circular surface
|z — a| < eis called, briefly, a (circular) eneighborhood of a.
Hwesget e = a + ia/, 2 = 2 4 4y, then the square surface
determined by

lz—al<e jy—o|<e

is correspondingly called a square eneighborhood of a.
1. Suppose z is a complex number such that . \\
N

z—1
z+1 ¢
This means that its distance |z — 1| from the mm +1 is
equal to its distance | z — (1) | from the point, 1" Hence, 2
lies on the axis of imaginaries. The equation .m'i?ben down can

therefore be regarded as the equation of thig\axis. This is also
true, however, of the simpler equation . ,'{\\J

R = 000"
8. In the same sense, R(z) 2 {J‘;;c}iéracterizes the right half-
plane (including its boundary .the axis of imaginaries); and the

interpretation of the inequalitids R(z) < 0, 3(2) £ 0, J(z) > 0
is equally simple. ~

= 1.

)
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CHAPTER 1II

THE RIEMANN SPHERE OF NUMBERS

14. The stereographic projection

Up to now we have used the plane of analytic geometry for
graphical illustration of the complex numbers. For many pdi
poses it proves to be-more advantageous to employ the ,sp&re
to this end. If it is to perform the same function, we“niust
bring about a correspondence between the points of the sphere
and those of the plane; must, as we say briefly, m{p“the sphere
{in a one-to-one mgnner) on the plane. The r lization of such
a mapping is the ancient problem of constrticting geographical
maps. It can be accomplished in the most varied ways. But it
is known that distortions are inevitably ntroduced in the proe-
ess: It is not possible to carry out the mapping so that the map
is geometrically similar to the origipal. We may, therefore, only
inquire, with regard to & givgxiﬁnap: Which entities (distances,
angles, areas, forms, ete.) bear a fixed ratio to those of the
original, which do not, afid what is the nature of the changes
in the latter case? Fo( our purposes, only the mapping known
as the stereogmphg‘c\’@vjectfion comes into question. It is realized
as follows: X\

On the zy-plane of analytic geometry™ we place a sphere of
diameter.l;\’i.ﬁ'such a manner, that it touches the plane at the
origin of evordinates, 0. So that we may be able to express
ourselVes conveniently, we make use of the usual geographical
texminology on the sphere, and, accordingly, eall the point of

‘,\~éc;htact, 0, the south pole, and the diametrieally opposite point,
\.the north pole N. We now consider the rays, issuing from this

north pole, which intersect the plane, and consequently also
intersect the sphere in a second point (distinet from N). We
associate the point {distinet from N) on the sphere with thai point

%1y this paragraph, all numbers are again supposed to be real; we
operate exclugively in the real domain.—We imagine the zy-plane to lie
borizontally before us.

35
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of the plune, which lies on the same ray (see Fig. 12). Obviously,
to every point P of the plane corresponds, in virtue of this
association, precisely one point P’ of the sphere, distinct from
N; and conversely. In short: The surface of the sphere (from
which one must imagine the north pole to be deleted) is mapped
in a one-to-one manner on the plane. It is clear that the parts
of the sphere lying in the neighborhood of the south pole re-

ceive, hereby, only a slight distortion, whereas those situated -
near the north pole undergo a violent distortion. What docgs
this mapping preserve? It is the purpose of the conS1derat10m"

which follow, to show that the mapping is circular and zsogonal
The first means that every circle on the sphere is ma ped) into
.4 circle or ¢ straight ine of the plane {and com{é\rig\)*), the
second, that ary {wo circles, and, more generdlly, any two
curves, on the sphere infersect at the same angle\as their images
‘in the plane (and eonversely)

&

RS FIGURE 12
2O

We see immediately that the parallels of latitude on the sphere
g0. over §% the eoncentric circles about 0 as center in the
plane, &vhile the semimeridians of the sphere correspond to the
rays. emanatmg irom Q. In particular, since we have given the
~dfatheter 1 to the sphere, its equator goes over into the eircle

ith radius 1 about 0 as center. For specifying geographical
longitude, we shall take that semimeridian to be prime meridian,
which corresponds to the positive axis of reals; and, in general,
the geographical longitude of a definite semimeridian will be
taken to be the vectorial angle of its corresponding ray ema-
nating from 0.

H is immediately evident, furthermore, that a straight line
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of the plane goes over into a cirele through the north pole. For,
the rays extending from N toward the points of the straight
line form a half-plane which cuts the sphere in the image circle
of the straight line. We now show: Two straight lines én the
plane infersect at the same angle as their image circles on the sphere.
This is almost obvious. For if we have two straight lines in
the plane, which intersect at the point P, then their imsge
circles intersect at the point P’ which corresponds to P, &
at the north pole, N, and certainly at the same angle at _botll
points. If we draw the tangents to the two image cirelqgtét-j;he
north pole, then these are parallel (in space) to the given lines,
because the sphere’s tangent plane at the north pogais paralle]
to our xy-plane. The angle between the straightllines at P in
the plane is consequently the same as the.sfigle between the
two image circles at the north pole, and hen.ce,‘ is also the same
a8 that between the image circles at P’/ \\

Suppose we have a curve ® in theplane, with a tangent to
it at P. Then, under the mapping) on the sphere, this figure
goes aver into a certain image eurve £’ and the image circle of
the tangent, which circle is tangent to & at the image point,
P, of P. And from this ,ifo:th’en follows immediately that any
two curves in the plame intersect at the same angle as their
image curves on th%x\sphere: The stereographic mapping s

isogonal. &\
O N
N '\ /
y \g a | P’
N
Ny i .
N A P S
\ 3

FIGURE 13

In order to establish the circularify of the mapping, we shall
represent it analytically. To this end, we introduce a rectangular
coordinate system £n{ in space, whose £~ and y-axes coincide,.
respectively, with the z- and y-axes of our zy-plane, and whose
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positive {-axis has the direction of the diameter ON. If we now
pass the plane containing the points O, N, P, P, through the
(spatial) Figure 12, we obtain Figure 13, in which we have also
drawn the segment OP' and the perpendicular P'Q dropped
from P’ to ON. In this diagram, OP = p = V2’ + ¢° and
0Q = ¢. ¢, for abbreviation, we set P'Q = o/, the right triangles
in the figure yield the two proportions

t:p=p:1 and (1~ =p:1L

From these we get

7
N

2

~
o
N\

;o P = £ . :
I _l_I_l'p?! ;’ 1+p2' ':;.\\

Tf we again denote the vectorial angle of thetay OP in the
plane by ¢, we have = = p cos ¢, ¥ = p_siye and likewise
£ = p cos ¢, 7 = p' sin ¢. Putting these(results together, we
have in ' {.\“:

O . \
: _ T - o I
(1) £ 1+ x2“+ el ] 1&?!_;.’2':2 T ¢ 1+ 2+ 5
the formulas which lead us trom the coordinates z, y of a point
P of the plane to the spatial coordinates £, », £ of the image
point P/, From (1) we\ immediately obtain

s‘ 7 2 ;-
(2) T = N b= » H
N I—¢ 7T 1-%
C oY e, 6D =W,

for the@?érse connection.
I, We now consider a circle or a straight line in the plane,
’.j;h““is' means that we fix our attention on all points (z, ) of the
\plane, for which an equation of the form
(3) a@ + ) ety +s=0"

is satisfied, where &, 8, v, & are real numbers. Tt is a circle or
a straight line, according as « is not, or is, equal to 0. For the
image points (£, », {) on the sphere we have, then, the equation

of +BE+yn+31 -9 =0
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But this equation is linear. Hence, all our image points lie on
the same plane cutting the sphere, and, consequently, form a
circle, ¢.E.D.

15. The Riemann sphere of numbers. The point «. Examples

Let us return to the system of complex numbers, Thus far
we have represented the complex number 2 = (z, ) = z + 1y
graphically by the point (z, ). We now associate with it alsq,
that point on the sphere which corresponds to the point (z, ¥\
by virtue of the stereographic projection described in §14,(and
call it, too, the peint 2, for brevity. Then the totality of complex
numbers corresponds, in a one-to-one manmer, to the.points,
different from the north pole, on the sphers, which.is therefore
called the sphere of complex numbers, the Riemain® sphere, or,
briefly, the complex sphere. \

It 13 useful to acquire as vivid a pictureas possible of the
distribution of the numbers on the complex sphere. We there-
fore make the following observations, whose justification the
reader himself will be able to supply:

1. The unit circle goes over int6 the equator; the interior of
the unit circle corresponds (¢ the southern hemisphere, the
exterior, to the northern_hemisphere.

2, The rays issuing O correspond to the semimeridians;
the vectorial angle,8f)a ray is the geographical longitude of
the corresponding 'se\nimeridia.n. In partieular, the positive axis
of reals goes eyer into the prime meridian; the negative axis
of reals, inyd\fHe semimeridian of longitude 180°; the positive
and negafive halves of the axis of imaginaries, into the semi-
meridishs of longitude -£90°. The circles in the plane about 0
as ceénter correspond to the parallels of latitude on the sphere:
ifthe circle in the plane has the radiuvs 7, then the geographical

“Natitude 8 of the corresponding parallel of latitude™ is given by
the formula, :

(1) cot (’—;- - g) .= r.

BNorthern latitude is reckoned positive; southern, negetive. 8 thus
satisfies the condition —(x/2) < 8 < +(»/2)
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This is inferred from Fig. 13, where

% NOP' = 4NPO=%(%-—B).

The upper half-plane yields the posterior {eastern)} hemisphere;
the lower hali-plane, the anterior (western) hemisphere. The
right and left half-planes likewise yield the right and left hemi-
spheres, vespectively. .
3 According to what precedes, the point z = (2, 1) = 2 +\\
= p {c08 ¢ + % sin &) yields that point on the sphere “ﬂlth.'
geographxcal longitude ¢ and latitude 8 which is obtained; Aronm
(1). The points 1, 4, —1, —¢ of the sphere lie on the. eguator
and possess the respective longitudes 0°, 90°, 180°, —(90 Two
conjugate numbers z and Z eorrespond to two pbuits on the
sphere which are symmetric with respect to thevplane of the

prime meridian. A reflection in the axis of in the complex
plane corresponds to a reflection in thel plane of the prime
meridian on the complex sphere. j.\s

4, To the peneil of all straight hnes through a point P corre-
gponds the pencil of all cireles Wh}(}h pass through the image
point P’ and the north pole; t¢ the peneil of all circles through
two points, the pencil of all circles through the two image
points on the sphere. To,a family of parallel straight lines
corresponds a famlly af)circles through the north pole, which
have there a common'tangent parsllel to the straight lines of
the plane.

5. A great eﬁ'cle on the sphere is the image of a circle which
meets the Gmt circle of the plane in two diametrically opposite
pomts'\énd conversely, every such circle has as its image a
greaﬁ‘clrcle on the sphere.

We shall see, in what follows, that some things can be visual-

‘Lpﬁd better in the plane, whereas others are easier to see on
the sphere. It 1s better to follow the four operations on pairs of
numbers (addition, subtraction, multiplication, and division) in
the plane. Anything that takes place in the very remote parts
of the plane, however, is viewed better on the sphere, because
such parts of the plane are mapped on parts of the surface of
the sphere which lie in the neighborhood of the north pole.
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This situation makes it seem appropriate to regard also the
north pole itself as the image of an (improper} point of the
plane: the point o (infinity). We thus add to the system of
complex numbers a single improper element, the value “snfintty”
(in symbols: «}; and, accordingly, the Gaussian plane is closed
by the point «. The complex plane which has been closed in
this way is then mapped on the full sphere in a one-to-one
manner without exception., The hitherto existing points
called proper points, to distinguish them from the improper
point o, and the hitherto existing plane is called the, preper
piane. The turn of expression often used in geometric di dﬁscourse
that a straight line in the plane may be regarded as\“closed at
infinity,” receives a direct intuitive meaning thro&gh the map-
ping on the sphere, because to the straight,] hﬁe “corresponds a
cir¢le through the north pole. Many othe? thmgs, too, will, in
like manner, become pictorially cleare;-\bn the sphere thau in
the plane. & \\

\l
\\
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SECTION KX « LINEAR FUNCTIONS
AND CIRCULAR TRANSFORMATIONS

CHAPTER IV

MAPPING BY MEANS OF

LINEAR FUNCTIONS O

o

16. Mapping by means of entire linear funcﬁéziéf ’

The concepy of a function will oceupy us more! i’l}hensively in
section 1V, We speak of a funetion, if to eve r;onlplex number
2 there is made to correspond, by means of\80me rule, a new
complex number w. In this section weshall deal with only a
very simple correspondence of this kind:If'a, b, ¢, d are definitely
given complex numbers, then tovgvery value z there shall

correspond the value R\
;'l'iz‘-l- b
(1 . Bt

In this case we spealk ‘of’a lnear function. In the real domain,
the behavior of afunetion y = () is visualized by drawing, in
an wxy-plane, the'\cdrresponding curve whose equation is y =
f{x}. Tn the gabplex domain, two planes are required. In one
of them{ b z-plane, we plot the value of the independent
va.riab]‘e@;?in the other, the w-plane or image plune, the corre-
spopgin value w. If we imagine this to be carried out for all
va{ueé z, we obtain a mapping of the z-plane on the w-plane. If
‘Riemann spheres are used instead of the planes, we obtain a
mapping of the z-sphere on the w-sphere. Sometimes it is con-
venient to think of the two planes or the two spheres in question
as coincident, We then speak of a mapping of the z-plane, or
of the z—spt}ere, on itself, Thiz mode of representation is ad-
vantageous in connection with the very first and simplest map-
pings o be considered.

42
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In the next few paragraphs we shall investigate more closely
the mappings effected by the linear functions (1). They are
called, briefly, linear mappings or lbinesr tronsformations. We
begin with the enfire linear functions, i.e., those of the form

(2) w =gz + b,
1. Let @ = 1. We have, then, the function
(3) w=z+b

before us. If b = 0, then (3) is the idenisly, in which case 1ma‘g¥
and object coincide. If b 5 0, we obtain the image point Ot any
z by adding the veetor & to the radius vector z. The ;tg;mnal
point of b then furnishes the image point t. Thys,\from any
figure of the plane we obtain the image ﬁgme:@ sixbjecting
the original to the ranslation or parallel dispiaeement (b), i.e.,
the parallel displacement determined in maghitude and direc-
tion by the vector b. Image and orlglnal\hve eongruent to each

other.
2. Now let b = 0, ie., lot the function be of the form

(4) ﬁ%
and take a # 0.*° Then ’c.he $hage point of any z is obtained
by multiplying it by one-and the same number a. Thus, ac-
cording to §12, it is @ained by rotating the radius vector z
through the angle ar 8 in the positive sense, and then stretching
it in the ratio 1 [’:N. This mapping is consequently designated,
briefly, as thelzviary strefching {a) with the center 0. If, in
particular, ]} = 1, s0 that @ is of the form @ = cos a + ¢ s
e, the mappmg reduces to a pure rolofion (o}, ie., a rotation
through_the angle a, and having 0 as center. Thls mapping is
Obm'ﬁsly again a congruence mapping. I, on the other hang,
&= 0 (mod 21), i.e, if a is real and positive, say equal to A,
7\ then we are dealing mth the pure sirefching 1: A. This map-
‘ping is a semilarity transformation with 0 as center; original and
image are similar to each other, and their ratio of similitude
isl: A.
®If g = @, the function is identically constant, viz., 0, which meane that

to every point 2, one and the same point is sasigred as image. This degener-
aie mapping, Whmh is of no interest, will be disregarded in the future,
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For arbitrary ¢ # 0, the mapping w = az is thus 2 s?'rrf,i.larzfy
mapping with O as center; the ratio of similitude of orlg}na‘l to
image is 1: | a|. Of course, for a = 1 it goes over again nto
the identity.

The rotary stretching {g) can also be carried out by firs
stretehing in the ratio 1: | e | and then rotating through the
angle am a: Rotating and streiching are (if both have the same
center) commulative operations,

3. If, finally, an arbitrary entire linear function . A\

w=o0a+b imt"v;*
is given, where it is assumed merely that @ # 0 (since otherwise
the mapping woutld again degenerate), the image',,ij} ¢an be
obtained from the original, z, by performing fire, the rotary
stretching (@) and then the translation (b).Nf\we write the

function in the form \\

S

it is evident that the same end “attained by performing first
the translation {b/a) and theilt,"b}fe rotary stretching (g),—the
latter having that point as Center, which is carried into 0 by
the translation. Both Wgoi@show that the mapping (2) by means
of an entire linesrsfunction is & similarity fransformation:
Original and image a‘ every figure are similar to each other in
the ratio 1: | g fi) :

To visualige,this mapping we have used the plane. The sphere
is not so Wl 'suited for this purpose, because addition (trans-
lation)\Js.not represented so vividly on if. Multiplication (rotary
stretehing) cannot be visualized so well either, though some-
wbaﬁ more clearly: To a rotation of the plane with O as center

\'\}corresponds, naturally, 2 rotation of the sphere about the north-
south axis, In order to picture the stretching 1: A (with 0 as
center), ope must imagine the surface of the sphere to be
drawn (like & rubber membrane) away from the south pole and

pushed toward the north pole, or conversely, according as
4 2L :
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17. Mapping by means of the function w %_ 1/z

The mapping by means of the simplest fractional linear func-
tion

@ w =1

is investigated most easily if we employ polar coordinsates in

both planes. We set \<
z = plcos p + 1 sint @), w=a(cosy’/+a'sinv,b).<:““‘:

Then, according to §11, (8), O

@ c=1/p and Y= —p Op

w and 2z thus have reciprocal absolute values, and‘\a.mplitudes- of
opposite sign. The transition from z to w\is therefore con-
veniently accomplished in two steps: />

1} the passage from a point z to that)point 2" which has the
same amplitude but the reciprocal absolute valus; and :

2} the passage from the point.2-thus obfained, to that point
which has the same absolute,y’giue but the negative amplitude.

The second step is particulgrly easy to survey. It signifies the
passage from a numbep{to its conjugate; hence, simply a re-
flection in the axis o,f.\’réls in the plane, or, a reflection in the
plane of the prime faeridian on the sphere.

The first stepf the passage from the point #z with the polar
coordinates p,'@'to that point 2 whose polar coordinates pf, ¢
satisfy the/equations
3 A o =1/p and ¢ =¢,

A\ .
is effected most clearly on the sphere: The points and 7’ bave
~the'same geographical longitude, and for their respective lati-
\tﬁdes 8 and, 8 we have, according to §15, 1,

8 g_ﬁ_’):,
cat (5= §) = cor{§~5) =

The two angles appearing in the left-hand members are comple-
mentary angles, because po’ = 1; consequently,
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@ 848 =0 F=-B

The geographical latitudes of the points z and 2’ thus differ only
in sign; each of these points can be obtained from the other by
means of a reflection ¢n the equater.

1

PIGURE 14 $ \ )

Ii we regard the plane of the meridian ceﬁtammg both points
z and #/, as the plane of Fig. 14, we easily infer from the latter,
that if the geographical latitudes of R and P’ differ only in sign,
then we have for their respective? mages z and 2’ the relation
o’ = 1, and conversely. N
On the sphere, then, we.get from a point z to the point w
determined by (1}, by reﬂectmg first in the plane of the prime
meridian, and then in-he plane of the equator. These two re-
flections obviously’dalr’ be replaced, however, by a single re-
flection in the line of intersection of these two planes; or, what
amounts to the’sime thing, by a rolation of the sphere through
180° about, tihis straight lime as axis. This axis connects the
pmnts +1%nd —1 on the sphere.
‘the mapping (1), when interpreted on the sphere, is
a pe&ecﬂy clear congruence mapping. Since the rotation men-
~ t’hned carries the south pole into the north pole, and the latter
\ jinto the former, it is reasonable to regard the pomnts 0 and =«
as images of each other in virtue of the mapping (1). In this

sense (bul also only in this sense), one sets, in the theory of
functions,

5y

i
8

1
= =0

O
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which is t0 say no more and no less than that, in the mapping
(1), O goes over into @, « into 0. On the basis of this agreement,
w = 1/znow effects a one-to-one mapping of the two full spheres
on each other. Every point thereby goes over into a definite
other point, with the exception of the two points &1, each of
which corresponds to itself. They are called the fixed points of
the mapping. _

In the plane, the interpretation of our mapping is not quite
so simple; nevertheless, it is Important to be well acquainted
with it here, too. The second of the above steps was seen’to be
a reflection in the axis of reals. Every figure is therefors. trans-
formed into a congruent one, but “with reversion \of “angles,”
since, under the reflection, & positive rotation gees over into a
negative one, and conversely. The first step;, which is given
snalytieally by equation (3), requires the\passage from a point
z # ( in the plane, to that point 2’ which)ies on the same ray
issuing from 0, but which possesses thie téciprocal distance from
0. This mapping, taken by itselfjis called the mapping by

.

R PFiGURE 158 FIGURE 15b

recig ocal radii, reflection in the unit circle, or tnpersion with re-
pect to the umst cirele. Its most important properties are the
“\ollowing:
\ 1. 2’ = 1/z because #' is conjugate to 1/ .
2. Reflection in the unit circle is snvolutoric. That is to say:
if 2’ is the image of 2, then, conversely, z is the image of 2'.
%On the sphere, the point —z' lies dismetrically opposite the point 2.
The points {(numbers) z and —1/% are therefore said to be diametrically
opposile each other, or antipodal.
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" 3. How to find the reflection, 2/, in the unit circle, of a point
z, by means of elementary geometric construction, can be read,
off from Figs. 15a and b, in which the circle represents the unit
circle in the plane. If 2 lies in the exterior of this circle, then
2’ lies in. its interior, and conversely. If z lies on the circumference
of the unit circle, then 2 is identical with 2. If 2 lies very close
to the origin, then 2’ lies far away from the origin.

This, too, makes it understandable why the image of the .
point 0 is to be regarded significantly as the point =, and\:
conversely. And, above all, it is now perfectly clear why one cleses
the complex plane with precisely one improper point, jidf" the
point o, A\

The further properties of the mapping by reciprocal radii
follow very simply if we pass from the previouslyused sphere,
by stereographic projection, to the plane. This, we obtain
immediately: PN

4. Reflection in the wnit circle is ciroitlar and isogonal,—the
last, however, with reversion of angles,vFor, the mapping cer-
tainly possesses these properties wlhen Interpreted on the sphere
as an ordinary reflection in the.éGuatorial plane, and then both
are preserved by the stereographic projection. Let us distin-
guish between “true circles® and straight lines in the plane
{we regarded them, in §14, as forming a single totality). Then

the following specia{ﬁaéts concerning reflectzon in the unit circle

result without further ado:
a) A straighbuline which does not pass through the origin
becomes a thue circle which passes through the origin.*®
b) A,gtﬁfght line which gees through the origin corresponds
to itgelf.ds a whole, '
OIA true circle which passes through the origin becomes a
(traight line which does not pass through the origin.
\Wd) A tl‘}}.e circle which does not pass through the origin be-
comes again & true cirele which does not pass through the origin.

4 circle on the sphere, which passes through the north pole but not
Fhroug;h_the south pole, goes over, under s reflection in the equatorial plane,
into a eircle on the sphere, which passes through the south pole but not

through the north pole.—The proofs of b), &), and d) are of analogous
simplicity.
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e} Every circle which cuts the unit cirele at right angles (such
a circle is said to be erthegonal to the unit eircle) goes over into
itsell as a whole. (For, corresponding to it on the sphere is a
circle which, because of the isogonality and cireularity of the
stereographic projection, is symmetric with respect to the
equator, and, consequently, goes over into itself under a re-
flection in the equatorial plane.)

f} ¥ two eircles which are orthogonal to the unit cirele in-
terscet (the straight lines through O may also be classed with
such cireles), then the points of intersection are symmetric with
respect to the unit circle. (For, on the sphere, they apej'sym-
metric with respect to the equator.) And, conversely, # circle
which passes through two points symmetric with rﬁ\&pett to the
unit circle, is orthogonal to the unit circle.

We have derived the properties of reflectign’ipy the unit circle
by transferring the corresponding ordinary ‘reflection in the
equatorial plane on the sphere, by meam‘}of' stereographic pro-
jeetion, to the plane. It is not difficult, either, to obtain it
without the use of the sphere. Let a8 denote the Cartesian co-
ordinates of z and 2’ by (z, ¥) ,@’g&'(x’, "), respectively. Then
x/p = z'/p’ = cos ¢ and y/pi= y'/p’ = sin ¢. Bince pp’ = 1,

o' = 2 + ¢, and o = 8% y”, we have

) _alx b Y
(5) X —j\mz + yﬁ': Yy xz_{_ y2
and N

£ 7 r
M 2a= i v = g

Now, e?\?’Eiry straight line and every circle in the plane can be

repres ted by an equation of the form

,\‘f."‘ wl + )+ B+ T =0,

“Where a, B, v, 8 denote suitable real numbers. If we replace
2, y by their respective values in (7), we find that the image
points (', ) satisly the equation

a4 B+ + 8@+ ") =0,

and, consequently, again lia on a circle or a straight l%ne: Re-~
flection in the unit circle is a circular transformation. Iis
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isogonality ean also be proved without great difficulty by re-
maining in the plane, but we may leave this to the reader.

It is now clear how to define refleciion in an orbitrary circle:
Let £, be the circle with radius r and the point ¢ as center. Then,
reflection in ¥, is understood to be the transition from a point
z # ¢ in the plane, to that point 2z’ which i1z on the same ray
ssuing from ¢ as z is, and is such that the produet of the dis-
tances |z ~ ¢ | and |2 — a | is equal to r°. The reflection of a&\“
however, is again to be regarded as the point . If I, is a straight
line, reflection in it shall have the elementary meaning, These
somewhat more general reflections have, of course, propertles
entirely analogous to those possessed by reflection, i $Q “the unit
circle. We prove the following theorem concerning tHem:

THEOREM. Let a circle T and fwo poinis 2, andd 2, symmelric to
it be reflected in a circle £, , yielding the circle ¥™Nand the points z;
and z; , say. Then 2 and 24 are symmeiric With respect io ¢,

For, any two cireles which pass thretigh the points 2, and z;
are (by 4f} orthogonal to £, But theii their i images f] and {; are
orthogonal to ¥, because of the clrculanty and isogonality. They

therefore intersect (again by érf),m two points symmetric with
respect to {'. XN

18. Mapping by n{eans of arbitrary linear functions
Let there he gxfem\ﬁnajly, an arbitrary linear function

1 PAY, _@+b

® ; "\ Y= 4+ d

Then ¢ and d. must not both vanish. If ¢ = 0, and hence 4 = 0,
we- ha “the entire linear function w = (a/Dz + (b/d), whose

m&ppmg we are already familiar with. If ¢ = 0, we can write
~ (1‘) in the form

\ ;2) W = _a_@;fif.__l___ a

From this we infor that (1) is identically constant (and hence,

the mapping degener&tes) if, and only if, the determinant of

the four coeflicients is equal to zero.”® We therefore assume that
#This is obviously also true for the ease ¢ = 0,
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(3 ad — be # 0

Jor all linear functions of the form (1) appearing in what follows.
Then the mapping furnished by {1} can be obtained in three
steps:

1) by the mapping 2 = ¢z + d,

2) by the mapping 2” = 1/2’, and

3) by the mapping w = a,2” + b, , with
ad — be

a = — b, =
1 c: 1

$

o i

The first and third are similarity mappings, the seqogfiris the
one investigated in §17. We therefore have imxxn@iiitely the

7

following principal theorem: L
TaroreEM 1. (1) furnishes a one-to-one mapping of the full z-
sphere on the full w-sphere. This mapping isSegonal and cércular.
In particular, the point 2 = —d/¢ goes Over into w = = (for,
it ylelds first 2 = 0, then 2 = &{ 8nd, consequently, also
w =w), and z =« goes over intew = a¢/c. It is therefore
reasonable to stipulate, as a fiqﬁp}e}nent to §17(5), that, when

considering linear functions, o\°

L QY

(4) ’a-.a.:"*-’-' b = E
\5 o 4+d ¢

¢ NS . .
The point z, whose image is preassigned to be the point w, is
given, according to (1), by

A&

(5) AN = —dw b
N\ cw — a

\

The:l"{}}ear function (5) is therefore called the inverse of (1).
The. determinant of the eoefficients of (5) is the same as that.
S

" The angle between two curves at « is understood to be, of
course, the angle at which they intersect on the sphere at th-e
north pole, The meaning of isogonality is also clear, then, if
the image point, or its original, or both, lie at «. Thus, when
considering linear functions, the point « s in no way singled out
from the other points lo play an exceptional role.
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On the basis of the last theorem in §17, we can state, finally,
the following one:

THE-OREM 2. Under every mapping of the form (1), the figure of
a circle® and two points symmetric with respect to il goes over
into the same kind of figure.

- For, the similarity transformations 1) and 3) certainly possess

this property; and 2) likewise, because it is equivalent to the
successive performance of two reflections, each of which, ac- A

cording to the Theorem of §17, possesses the property. \\
#The straight lines are to be included here. \'\ N 3
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CHAPTER V

NORMAL FORMS AND PARTICULAR
LINEAR TRANSFORMATIONS

19. The group-property of linear fransformations

Let us go from a z-plane to a gplane by means of a ﬁnQ{\

linear mapping

$ 7
W i

ezt b C
(1) 3= ez +d, Lz, .nf‘;
and thence to a w-plane by means of the hnear n@ppmg
b
@ we D LN

Then a simple ealculation shows that‘tfm dlrect iransition from
the z- to the w-plane is effected by the function

3) w-“"‘jg-z(zx

whose four coefficients {s@b be read off from the “‘mairix equa- |

tion” ) \' ;

("-Tr b) — (ﬂs :hz)(;ll b;) — (Gzal + by . ab + bndl).“
¢ d '32\ dz o & ca, + a0, b, + did,

By compeundmg two linear mappings 3 = L(2), w = L) we
thus \mn obtain a linear mapping

@ 1) = L) = bh(2).

I‘f 7, and I, do not degenerate, neither does . For, according to
the multiplication theorem for determinants, or by a simple
caleulation, we find that

*5The rows of the first matrix are “combined” with the columns of the
next; i.e., the sum of the products of the corresponding elements of the fwo
is formed,-—just ag when multiplying determinants. :

N . 53



a b
¢ d

ag bg G.l bl

¢ d,

!

e

and since neither factor is zero, the product is not zero. It is
also easy to verify that this compounding or “symbolic multi-
plication” of linear functions is associative, i.e.,

(5) . I (L) = (l.’izﬂ)ll .
‘Every function has also an inverse; for, according to §18, (5’)\§\
the inverse of (3) is the function O
wz—dz-i-b‘ ‘
2z —a ¢

0N
(N

It is denoted by I'(z). When compounded withiifz), it yields
_ the identity: N\ %

') = 17U = ;\\«'
which corresponds to the coefficient ga,trﬁy

("
St

N

On the basis of these facts, we can state the following

Traeorem. The limgr‘ﬂ}zppings form a group, if the compound-
tng of linear functioﬁ@{s employed as group multiplication. The
tdentily is the idimtily element of the group, inverse functions are
tnoerse elemenisy ;™

K ,\‘20 Fixed points and normal forms

;l} &qwe already spoke of fized poinis of a mapping. A fixed
pgut:\ls understood to be one which coincides with its image.
.. Ifythis is to be the case for a point z under the mapping
vV
1 . _wm+h
(D W= =

z must satisfy

30Oy (a 0), with a ## 0,
0 a



N

N\

55

o =5i-

2z o & —-(@—dzg—b=0

This is a quadratic equation in z, whose coefficients all vanish
only if the mapping is the identity (@ = 4 # 0,b =c¢=0).
We therefore have immediately

TusoreM 1. A linear mapping which is not the identity has
at most fwo fized pointsi—Hence, if @ linear mapping s known
fo have af least three fized points, 1t must be the tdentity. e

If ¢ 3 0, so that the mapping is & fractional linear one, bqth\\
fixed points (which, of eourse, may also coincide) are finipe, &f
¢ = 0, in which case we have an eniire linear mapping, &t)least
one of the fixed points lies at e (this follows already from §16).
If, moreover, a = d (but & # 0), we are dealing with transla-
tion, which leaves only the point fixed. Hegoe; as & supple-
ment to the preceding theorem, we have )

TreorEM 2. The point « is a fized potndf, and only ¥, the
linear mapping s entire; it is the onlyfided point &, and only if,
the mapping is a translalion. QY

Through the use of the fixed points, one can acquire an even
more vivid insight into the nature of the linear mapping.

1) First, let N\

@) Cw=atb

be an entire 1inea:r‘iﬁa:bping which is not a translatic':n (conse-
quently @ > 1)NIn addition to the fixed point =, it has the
finite fixed péint

5 0 -
@) AV {=1"a

QO . L
Byusing {, the mapping (3) can be brought into the form
\N"
) w -t =akE— 8

from which it can be interpreted as follows: In the 2-plane, first
perform the translation z — ¢ (it moves the point { tf} the orlglg).
Now effect the rotary stretching (a), and finally bring the? point
0 back to ¢ by a translation. Thus we see f.hat the mapping (3)
signifies simply a rotary stretching (@) with the fixed point ¢
as center! The mapping has become perfectly clear through this
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interpretation. In particular, it is evident that the pencil of
straight lines through { goes over into itself as a whole, and
the same holds for the family of concentric circles about { as
center: under a pure rotation {|a] = 1), each of the circles
individuslly; under a pure stretching {¢ > 0), each of the
straight lines individually.

2) Now let ¢ & 0, so that poﬂz‘ﬁxed points, call them ¢,
and {, , are finite. Moreover;det ¢, = ¢; . Then, it follows
immediately from the circylaﬁfy of the mapping, that the pencil
of circles through ¢, a d.t, goes over into itself as a whole

(Fig. 16). More partidular information about this can be
obtained as follows:\

By the mapgnpg
O _
(6) "\.&. 3 = Z g'l = Z (z)
\w. 2 — §. 0=y
~Q 2
AN
~\J

\/;

FIGURE 17
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which brings ¢, to 0 and {, to =, the pencil in Fig. 16 is mapped
into the pencil of straight lines in Fig. 17: the circles through
0 and «. Let the first lie in the z-plane, the second, in the
yplane. [f we imagine the first to lie in the w-plane, the second,
in & w-plane, then, analogously,

B el S R
(M w= t Io(w)
maps Fig. 16 into Fig. 17. Because of the group-property OK‘
the linear functions, a linear mapping of the 4-plane on, th
w-plane, namely, the mapping R\
(®) m = L0,
is effected hereby and by the mapping (1), Sinqe\x(@) has 0 a_nd
@ as fixed points, it is, according %o 1), d-Yobary stretching
with O as center, and therefore has the simple form W = 0
where a is a certain complex number. C&Jsequently_, by using
the fixed points, (1) can be broughtnto the following normal

form. KO
© oo L G2 h

w%s z— 8
The value of a is fourd, immediately by setting z ==, which
yields w = a/e. HRMQ, :
O _a— ey
{10 ) 0= a2 -t

The aigitment carried out shows more at the same time: Since
thereit-a family of circles orthogonal to the pencil of straight
lingsin Fig. 17, namely, the family of cireles about O as center,

‘ﬂiere also exists a family of cireles orthogonal 'to the pencil of
Weireles through §, and ¢’ in Fig. 16. This family we shall call,

for brevity, the family of tioireles aboul and: " Tt, too, and
hence the complete Fig. 16, goes over into itself as a W_hole,
under the mapping (1). Beyond this we can say more precisely:

a) If [a| = 1, then w = a3 is & pu® rotation, and, conse-
quently, each of the circles of the second family goes over mto
itself as a whole, while those of the first family are permuted
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smong themselves. The mapping (1) is then said to be elliptic.

b) If ais real and positive, it is just the reverse. The mapping
(1} is then said to be hyperbolic.

¢) If {a| 2 1 and ais not a positive real number, the mapping
is said to be lozodromic. It is obtained by carrying out steps
a) and b) in succession.”

3) Let ¢ # 0 once more, but now suppose that &, = ¢, .
The mapping is then said to parabolic.’® The totality of circles
through the fixed point—call it {—goes over inte itself as'
whole. A family of circles through §, which have there a_¢om-

€ W3
o g

o\\FIGURE 18

mon tangent (sed ‘R}gx 18), likewise remains unchanged as a
whole. This, aghwell as further details, are again seen more
clearly if thedfixéd point (in the z-plane and in the w-plane) is
sent to m\by the auxiliary mappings

1 1
1) = -
( “3\\ 3 2 — g.’ m w — ;’

. :{"‘@épectively. The circles in question then go over into the
\/straight lines of the plane; those circles having a common tan-

¥11f the auxiliary plane of Fig. 17 is used, the individual steps cen be
followed even more closely.

ll‘The‘ same t(?rminology, of course, is used for entire linear mappings: a
translation is said to be parabolic; a rotary stretching with the fixed point

ag center {cf. (8)) is said to be lozadromic; a pure stretehing, hyperbolic; a
pure rotation, ellipiic.
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gent, into a family of parallels. Again s-plane and w-plane are
mapped linearly on each other. But since @ 18 tLe only fixed
point under this mapping, the two planes arise from each other
by means of a translation w = 3,+ b. Hence, in the parabolic
case, (1) can be brought into the form

1 1

(12) w—t z—¢ + 8

and since z = = and w = &/¢ correspond, we must have , \\“
¢ S,

{13} b= O

The family of circles lying in the z-plane, passing x‘o@xﬁiﬁgh £,
snd baving there a common tangent, is transfored by (11)
into a family of parallels in the j-plane. This lasb family is left
unchanged, as a whole, by the translation\éb); and hence, re-

turns, by virtue of (11), to the initial i;‘?p\jﬂy.
21. Particular linear mappii;g‘sl Cross ratios
Theorem 1 of §18, in part-ictila:f; the fact that circles are

always transformed mio circle$, Dy linear mappings, remains the
most important of all that iifecedes. We shall now investigate
more closely how this tdkes place. To this end we first prove
. TuroreM 1. Three@éﬁen distinct potnis 21, 22, %3 can always
be carried into thyee prescribed dastinct poinis Wy , Wa , Wa by one,
and only onepliietr mapping, W = 1(2).*

Proof: The.équation

\Y — — — e
b AV e oW 2B A
()“i\ w—ws W2 — ¥s g — 28 %%
"‘El“:?\ﬁﬁeﬁ a definite linear function W = iz). Eor, on the- left we
N\ have 2 linear function of w, on the right, a linear function of 2.
If we call these I,(w) and &(2), respectively, ’n?xen w = iz =
I3'0,(z). Here we must agree, in accordance with §.18 (4), that
if one of the points z, oT W, is the point <, the quotient of those
two differences which contain this point is to be replaced by 1.
BQne of the points z, , as well as 0ne of thew,, ® =L 2 3), may also

be the point =. :
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This function w = I(2), now, accomplishes the desired end. For,
L{(z) assumes, forz = 2, , %, &, the respective values 0, 1, o,
and 1, (w) takes on these values forw = wy , w2, Ws, respectively.
Hence, i(z,) = w, , (# = 1,2, 3). Il the linear function w =
L(s) accomplishes the same, then the linear function L™ 'I(z)
obviously has the three distinct fixed points 2, , 22, % , and,
consequently, according to §20, Theorem 1, i8 the identity.
Therefore L{(z) = {(z). This completes the proof. o
Now, an oriented, circle (including the oriented straight 1ine}\
is uniquely determined by three (distinct) points givendin’a
definite order. Hence, from Theorem 1 follows immediately the
further N
TaroreM 2. A given oriented circumference of i (ircle in the
z-plane or on the z-sphere can always be mapped by one, and only
one, linear function, into a given oriented circumference of a cirele
in the w-plane, in such @ manner, that thiee given points of the
z-circle thereby go over info three given qgoinis of the w-circle, pro-
vided that on both circles the points suected one another in the sense
of the orientafion.
The complex plane is dividetihy a circle (or a straight line)
into two parts. That one of ‘them which lies to the left of the
orientation will be called\“the interior’” of the circle, and the
other one, “the ezter;igr‘," of the circle.*” The complex sphere is
divided by a circleinto two spherical eaps. That one which,
viewed inside the'sphere, lies o the left of the orientation we shall
call the inferio of the eircle, the other, the exterior of the circle,
s0 that ingeriers of circles correspond to interiors of circles under
stereogfapliic projection. Since the mapping of full spheres by
meafi\of linear functions is one-to-one and, moreover, isogonal
'\gith'out reversion of angles, there follows, now, as a supplement
~\'t0 Theorem 2:
' TraeoreM 3. The linear function mentioned in Theorem 2 maps
the tnterior of the z-circle in a one-fo-one manner on the interior
of the w-circle; and Wkewise, nafurally, the exterior of the first on
the exterior of the second.
To express briefly the herehy established property of linear

#Thys, if, e.g., the axiz of imapinaries Is oriented from bottom to top,
the left half-plane is the interior, the right half-plare i the exterior.
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functions, that if they map two oriented circles into one another
they also map their interior regions (and likewise their exterior
regions) on one another in a one-to-one manner, we say that
regions are preserved under linear mappings.

Examples of these, and the mappings mentioned later on,
follow in §22.

The peculiar expressions appearing in (1) are called cross
ratios. The following is a more precise

DeriNITION. Lét 2, , 22 , 23 , 24 be four distinct points on ;he\\
sphere. Then the expression N\

2 (21,2 3% ,8) = gf:%: : :—:t%: ) ,\\:’;"
shall be called their cross ratio. If one of the pointsJies at =, then
the agreement made above comes into force.”’ \%
From the proof of Theorem 1 now follows immediately
Tarorem 4. The cross ratio of four pei remains inveriant
under linear mappings. ¢ \Y, )
That is to say: If the four pointgi, go over into the respective
points w, , (@ = 1, 2,3, 8 undgithe mapping w = I(z), then

(w0, , Ws ; Wa ,‘w‘;’) = (21 s %23 %3, Za).

For, since w = I(z) performs what is required in Theorem 1, it
must be the funetiod given by (1). It also carries z; into w, .
Hence, forz = 24 ,’w\—# w, , (1) immediately yields the assertion.

An oriented.ditele can be given by means of one point of the
circumference’dnd a pair of points symmetric with respect to
the cirelg;/mistead of by means of three points of the circum-
ferende\This yields, in connection with Theorem 1,

ThroreM 5. An oriented z-circle con always be linearly™

_ .~{‘1:fhe order in which the four points are taken is nat essential, but, of

“\eeurse, once it has been chosen, it. must be retsined. If the four points are

‘permuted in all possible ways, we do not obtain 24 distinet values of the

cross Tatio, but, on the contrary, at rmost 6. If one of the values is equal to

3, the others are 1/8, 1 ~ 8, 1/Q — 3), /(8 — 1), and (& — 1}/ 4. These
values may coineide in part.

#]¢ can be shown that the most general Function which maps the inderior
of one civele in o one-lo-one and conformal manner on the inderfor of another
circle, 15 a linear funciion. See, e.g., L. R. Ford, Automorphic Functions,
New York, 1929, p. 32.
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mapped, in one, and only one, way, tnio an oriented u-circle in
such @ manner, that a given boundary point 2, and & given tnierior
point z, of the z-circle thereby go over into correspondingly situated,
prescribed points w, and wy .

Proof: Let 2} , w) be the reflections of 2, , w, in their respective
vircles. Then, aceording to §i8, Theorem 2, a linear function
which accomplishes what s required must also carry z; into

w} . Hence, only the linear function resuiting from XY
N
@) (wy, wo 5wy, w) = (&1, 2 ;2,2

can accomplish the desired end, and, according tothe pre-
liminary remark, this is also the case. \~
. 2 .\

2%

22. Further examples N\~

1. Mapping the upper half-plane (UH) on\the unit eirele {UC).
a) ¥ we require, say, that the interiorf bo'fnt 7 of the UH go
over into the center of the UC, and $hiat the boundary point 0
of the UH go over into the boundar’y.pbint —1 of the UC, then,
according to §21, Theorem 5, thetmapping is uniquely deter-
mined. Since it sends —¢ to @} the points z = 4, 0, —i go over
info w = 0, 1, =, respedtively.* Hence, according to §21,
Theorem 1, Q
A\

) ___‘E{J__:'_O__.=’z.\e~5-_1:.0*-i 21
—T-0 e+ 0+ T YT
is the requived mapping. For every real z, | w | = 1, as is easily

veriﬁed: Gonversely, by means of the inverse function

(2)\'\\~ z= -—‘i:ﬁt;,

\ the UC of the w-plane is mapped on the upper z-half-plane.
’ 'The fur_ther details of the mapping become more vivid if we
ask, which curves in the UH go over into the radii of the UC,
and which curves go over into the cireles which have the same

“We purposely order the points in such s manrer, that ws = . For
then (w: , ws ; wa, w) has the simple form {w — w)/{ws — w,), and thus

contains the variable w, for which we must finally solve, only in the
numerator. ’
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center as the U{ but are smaller than the Iatter. Because of
the circularity of the mapping, we immediately obfain: Re-
ferring to the circles in the z-plane which pass through +7 and
—1, those parts of them which lie in the UH are transformed
into the radii of the UC; and the circles “about 47 and —#"
which are orthogenal to the first peneil of cireles and lie in the
UH are transformed into the circles which have the same center
as the I/C but are smaller than the latter. C

By means of this mapping, moreover, the first gquadrant, OT\
the z-plane is mapped on the lower hall of the UC; thus %
quarter-plane, on a semicircle.*

b} H we require, somewhat more generslly, that\he pomt
%, {3(z) > 0), in the UH go over into the originy'and that
the boundary point «, (@ resl), go over intg 1; e boundary
point —1, then

O
3) w = i M fo ic\‘z:— f(], (ic I =1,
@~ 22— 2 NVE—E

accomplishes what is required. Th‘e~ further details are entirely
similar to those under a). 3%

¢} The requirement that-fhe ‘three boundary points 0, 1, «
of the UH go over intos Q}e boundary points ¢, —1, —1¢ of the
UC, also determines \ﬂﬁ mapping uniquely. We find (and it
can be verified subse\quently by substituting the z-values):

o™ .2 — 1

Y \\ W = —zz-l-i'

o JTH of the z-plane is to be mapped on the UH of the
w-plane in such o manner, that the points z ==, 0, 1 go over
ik he poinis w = 0, 1, =, respectively. The mapping is hereby
_ \'“binfquely determined. Proceeding as in 1., we find

(5) W= —

41t is earncstly recommended that the reader make simple skepchea for
all of the mappings discussed, letting corresponding points and pa.r?s of
boundaries or regions become clear by using the same colors or hatchings.
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Under this mapping, what becomes of the parallels to the axis
of reals; the parallels to the axis of imaginaries; the two quad-
rants of the half-plane? What are the answers to the “inverse”
questions?

3. The exterior of the UC is {o be mapped on the vight half-
plane. If we send, let us say, the points

Z=1,—%., -1 to ‘w=£aoi @y

respectively, then in each of the planes the region in questid!x\
lies to the left of the orientation given in this manner. Hence,
the mapping O

o,z 1 Q4P+ (=144
©) w=tt = zF 1 .\~3\

does what is required. We leave it to the regder to determine
what becomes of the cireles which have thg\same center as the
UC but are larger than the latter, and Shat becomes of those
parts of the rays issuing from 0, Whg;h le outside the UC.

4. The UC 1s to be mapped on fstself in such a manner, that
the interior point 2, , (| 2o | < 1);'18 transformed into the center.

If 2, is to go over into 0, the'reflection of 2 in the unit circle,
ie., the point 2} = 1/3,, xiiuét be sent to «. Hence, the linear
function we are Iookmg\for must have the form

¢\,

- A—_zo_ or w=g ilH

~2 — (1/2) ' Zz — 1
Now, the radi’us of the image circle will again be equal to 1 if,
and only if, fythe image of the point +1 has the absolute value 1:

AV
Q:’\\ 1= 2 =|e¢| =1
p N :' Eﬂ - 1
<\:Hence, in particular, the function
w= 2%
Zz — 1
vields the required mapping.

5. Twe circles which have no point in common can always be
transformed, by o linear mapping, into two concendric circles. For,
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two circles of the first kind (whether one encloses the other or
not) can always be regarded (in precisely one way} as two
cireles of a pencil of the kind described in connection with
Fig. 16; i.e., there is precisely one pair of points ¢ and {; such
that the given circles belong to the pencil of “circles about {;
and ¢, .”*° The mapping

Rl $1
2 — ;-2 > \\\
then obviously performs what is required. O\
Finally, we prove the following Theorem: ~

6. The cross ratio of four points is real ¥f, and qn;ly"‘{f, the
painis lie on a circle (or a straight line). For if thgzgr\}ssswatio s
1o be real, : R\ N

2, — 2 2z %

%A and am 2

2y — %3 o ¥ %3
0\ v

<]

< FIGURE 19
must eitﬁé\r be equal or differ only by £ The first amplitude
Bigniﬁ%"ﬁ’he angle through which the direction extending from
2, 40, 2, must be rotated in the positive sense until 1t coineides
.. @ith the direction leading from 2 t0 2. , and the second ampli-
\\ Jtude has an analogous meaning. Elementary theorems on
peripheral angles now establish the validity of the theorem (see
Fig. 19),—irrespective of whether the pair of points z , z, are
separated by the pair 2, , 2; or not.

#The “base points” {1 and & of the pencil are found by drawing t}}e
line of centers of the circles. & and {, then separate harmonically the palr

of points of intersection of each of the circles with this line.
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SECTION IEI « SETS AND SEQUENCES »
POWER SERIES

CHAPTER VI

POINT SETS AND SETS OF NUMBERS, ™

i

23. Point sets p \\“

If a finite or an infinite number of compléfxzhumbers are
selected according to any rule, these constitube™s set of numbers,
and the corresponding points constitute a. pgint set.*® Such a set
IR is regarded as given or defined, if the rule for selecting
enables one to decide whether a given number belongs to the
set or not (and only the one or the dther alternative is possible).
The individual numbers (po:';r{ts)"of the set are called its ele-
ments. It is possible for tht‘;"déﬁning property of a set to be
such that no number hawing this property exists—we then
speak of the empty sgi@vor such that ol numbers belong to the

© set, {

¢ LN
Simple emm;glésxf such sets are the following:
M, . All complex numbers whose real and imaginary parts

are integers,Fhe points of this set are called the latiice poinis
of the Hlame.

W%AH complex numbers whose real and imaginary parts
ar@\'& ional.

"\C %, . All real numbers,
«/ My . All numbers of the form 14(1/n), where » is a natural

number,

Iy . All numbers of the form (1/m) + (i/n), where m and »
are natural numbers.

Ms . All complex numbers z for which | 2| < 1.

“In this chapter, we use only the plane for graphical representation.
The point « will not be employed for a while,

66
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Each of the relations considered in §13, 4.-8. defines a certain -
point set. '

A set 9 is said to be bounded, if there exists a positive number
K such that

|z = K

“for all z of the set” (i.e., for every number z which belongs to
%). Such o number K is then called a bound for the (moduli,
of the numbers of the) set. In the contrary case, M is said to be\
unbounded. Of the sets just given as examples, I, , SUE”::}n:d
M, are bounded, the others are not. The totality of ‘points
which do ot belong to 9N constitute the complemendlry set or
complement of M. ’:j\\ ’

If a point ¢ of the plane has the property, that an infinite
number of points of It Lie in every eneightietliood (see §13,6.)
of ¢, the latter is called a limif poind of S ¢, has no limit
point, whereas every point of the planefis*a limit point of M .
The point +1 is the only limit poinb.of I, ; the limit points of
N, are O and all points of the form 1/m and i/n (m, n are
natural numbers). Every pointis"ﬁdth [£] =1is a limit point
of M . .

In §§24 and 25 we shall Prove the important Bolzano-Weier-
strass theorem: QO '

THEOREM. Every\'éminded infinite (i.e., consisting of an infinite
number of poinis) point sef has al least one Eimit point.

A point belonging to 9% is said to be “;solated,” if there exists
an eneig 'bb?h'ood of the point containing no other point of M.

1t is callgd an snterior point of I, if an e-neighborhood of the

poinis\\ﬁé‘fongs entirely to % Bt , M. , and M, consist wholly of
i%oia\,bed points, I, contains only interior points.

. (VA point { of the plane ({ may or may not belong to ) is

U called a boundory point of M, if there is at least one point which

belongs to IR and at least one which does not belong to I in

every eneighborhood of {. All the sets given as examples above,

except M. , consist exclusively of boundary points. Those, and

only those, points { with | ¢ | = 1 are boundary points of Ms .

A set is said to be closed, if it contains all its limit points. A

set is said to be open, if every one of its points is an interior
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point of the set. I, and I, are closed, the rest of the above
sets are not; M, is open.

24, Sets of real numbers

If, in the considerations of the preceding paragraph, we re-
strict ourselves to the totality of real numbers, we arrive at
the corresponding concept of sefs of real numbers or real point
sets. The definitions remain essentially the same. It is to hes®
noted, merely, that the complement of % is only the set of alls
real numbers which do not belong to 9%, and that an enéigh*
borhood of ajreal number £ consists of only those real numbers
z for which | x — £| < e Except for these, all dqﬁ.Q‘iﬁons re-
main exactly the same.*” Nevertheless, several new dgtails arise,
due to the fact that the real numbers form an m}gmd set:

A resl set is said to be bounded on the lefipif*a number® K,
exists such that x = K, for all = of the sgat,\\[f allz £ K, , the
set is said to be bounded on the right. Kiis called a lower bound;
K., an upper bound. The former mayzt}g‘répls,ced by any smaller
number, the latter, by any largersiumber, but not conversely.
Of all the lower bounds, howeyer, there is a greatest; i.e., there
exists a number ¥ with the following two properties:

1. No point of the set,{ie\s to the left of v; briefly: there is

L) e 2 <y

2. Atleast one point of the set lies to the left of every greater
number; in otkigr words: for every ¢ > 0, there is
N atleastonez<7+e.

N W

-Thisﬁnrfﬁ'sber v is called the greafest lower bound of the set
(abb}:}viated: g1b.). We prove

. TaEOREM 1. Every set which is bounded on the left possesses o
\ well-determinedagreatest lower bound .

Proof: Divide the totality of all real numbers into two clagses
%, A’ Into the class U, put all real numbers g for which no

71t is to be observed, however, that every resl set may also be regarded
as & set of complex numbers, since the real numbers are contained in the
system of complex numbers.

#The “pumbers” in this paragraph shall always be real numbers.
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r < a; into the class ¥, put évery pumber ¢ for which at
least one # < o'. By hypothesis, ¥ ard 9’ are not empty, ahd
we have always a < &, since otherwise there would exist an
T < a :

Let v be the real number defined by this cut. Then v is the
greatest lower bound of 9. For if there were an z < v, = would
also be less than every number between « and «, which number,
being less than y, would belong to 9, Thus, there would be an
2 < a, which is impossible. Hence, there Brox <7 On th.g
other hand, if ¢ > 0, then v - ¢ belongs to %', and, cgnsé-
duently, there exists af least one & < ¥ +- & QE.D. R,

Similarly, the least upper bound (Lub.) of a set is déﬁned as
the number ' with the following two properties: Y

1. Thereisno x > 7. : \’\

9 However ¢ > 0 be chosen, there is af kst one z > v' — &

Concerning the least upper bound, we have

TegorEM 2. Every set which is boungédyon the right possesses

a definite least upper bound ¥'. SO

A set which is bounded on both gides thus possesses a definite
greatest lower bound and 2 définite least upper bound. The
two numbers themselves need hot be points of the set. If a set
is not bounded on the left) we say also that its greatest lower
bound is — w; if it is{@ot bounded on the right, we say that
its least upper bpm\d]slé + . :

The Bolzane-Weiersirass theorem, which was already men-
tioned in §23, an now be proved in the real domain, The proof
is quite similar to the one just given:

We again divide the totality of all real numbers into two
clasges. ¥, ¥'. Into the class 91, put every number a having
tllf;i}roperty that no points, or at most a finite number of

~points, of the set Lie to the left; of a:

at most finitely many £ < &.

Into the class %', put every number ¢ having the property that
an infinite number of points of the set lie to the left of a'’:

infinitely many ¥ < o,

Tt is immediately evident that this ¢lassification represents a
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Dedekind cut. Let it define the number x. Then u — ¢ belongs
to . Consequently, at most a finite number of points of the
sot lie to the left of 1 — e. On the other hand, p + ¢ belongs to
%', and therefore there are infinitely many x of the set which
are less than p 4 ¢ Hence, infinitely many x of the set must
lie between u — e and u + ¢ ie., p is a limit point of the set.

Since at most a finite number of points of the set lie $o the
left of u — ¢, there is certainly no further limit point there; .
i.e., ¢ is the least limit point, or the one farthest to the left, and\\
is therefore designated as the lower Limit or limes inferior {abs
breviated: lim or lim inf). N\ K4

It can be proved in an entirely similar manner, that .there
exists a greatest limit point, or one lying farthest to\‘ﬂ)é_'r'ight,
#', which is called the upper limit or Limes supefior (lim, lim
sup}. It is characterized by the following twoproperties:

1) There are at most a finite number of >’ + e

2) There are an infinite number of z {4’ — ¢, no matter
how the positive number ¢ may be choses.

- It is evident that always p = #%'These points need not
belong to the set. Together they.;ﬁiie called the principael Limits
of the set, &N

If a set is not bounded om the left, then we designate —
as its lower limit; likewis, "4« as its upper limit, if it is not
bounded on the right, ¢ inally, if the set is bounded on the right
but not on the loft, and if it has no finite limit point whatsoever,
it is reascnable toycall — « its lim sup, and, in the “mirror
image” of this ¢ake, - « its lim inf.

The set pf.real numbers which lie between two real numbers
a and b, (&)< b),—they il out a segment of the number axis,—
is tergied the inferval a...b. It is called closed or open, ac-
cqy\a:,iir’ag as the end points are regarded as belonging to the set

<q:r,,n0t. The first is denoted by {a, ), the second, by (a, b).

25. The Bolzano-Weierstrass theorem

Leaning on the Bolzano-Weierstrass theorem in the real do-
main (§23), we can now also prove it in the complex domain.
Let ¢ be a bounded infinite point set in the z-plane. Then we
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can demonstrate the existence of a limit point { of this set as
follows:

The set of real numbers $(z), (z in M), is edther again a
bounded infinite (real) set, and then has, according to §24, at
least one limit point £; or it is finite. In the latter case, however,
there must be among its finitely many elements at least one,
eall it £, such that R(z) = & for an infinite number of z of the
set. In either case, then, there exists a real number § such that,
for every e > 0, X8

E— e < R <4 e :
for an infinite number of z of the set. We say briefly: Inifévery
estrip about & there are an infinite number of z of\the set.
Now we execute a Dedekind cut for the ordinates, We divide all
real numbers into two classes B, 8. Into BGre put all real
numbers b with the property: In every e—str'{p about £, there are
an infinite number of z of the set with, Q’&)’ > b Into B’ we
put all numbers ¥’ for which this is met'the case. This classifica-
tion (B|Y’) is obviously a cub. Let it)define the real number 7.
Then ¢ = § + in is a limit poitigef M. For, if ¢ > 0 is given
arbitrarily, 7 + ¢ belongs tothe class %', There is therefore an
¢-sirip about & with 0 %M < ¢ such that in this strip only
a finite number of z of Alle set have an imaginary part 3(2) >
1 + e Since, howevefyn ~— ¢ belongs to B, there are an infinile
number of z in thiSstrip with $(z) > 7 — e Hence, an infinite
number of z of {he set lie in the rectangle

E—e{k\ﬂ?(z)<f+e’, p—e< 3@ <nte
and, ‘cénsequently, also an infinite number in the square e
ne;ghborhood of {, QED.

s ) )

\‘:



CHAPTER VII

SEQUENCES OF NUMBERS.
INFINITE SERIES

26. Sequences of complex numbers

~N

If, by virtue of an unambiguous rule, there correspondg\}o
every natural number 1, 2, 3, .. . one definite complex fitmber
%1,22,%,..., respectively, there results a sequence gf aumbers,
which is denoted for brevity by {z.} or {z , z, ,{’.”:,}. The z,
.are called its terms. The values of the terms need w6t be distinet.
Often a “zeroth” term is placed at the beginnifig of the sequence,
as its leading term. Simple examples are thefollowing:

1. {a"}, i.e., the sequence of numbel e, o, ..., d" ...,

where g i8 a given number. R

2. {1/n}, ie., the sequence of wimbers 1, 1/2, 1/3, ...,
1/?1, L ."::’ ™

3‘, The sequence {zn}d Withzo': 1! g = ?’-:l o = %(za—i + 3-—-2)
forn = 2.

The points which qorréspond to the numbers 2z, constitute a
sequence of points. If\One and the same point appears several
times or an inﬁnité\’hﬁmber of times in the sequence, “it counts”
several or an inpfinite number of times as a point of the sequence.

Conversely, if 9 is an (infinite) point set, and if it is possible
to desig;1&§€ the points as z, , z,, ... in such a manner, that
every point of I is thereby given a number, then M is called

. an Qimfﬁerable point set. The sets M, , M, , M, , and M; in
§23-are enumerable, %, and D are not. (We shall not consider

) \’h re & proof of this assertion.) In the case of a point set, we
\\, “assume, of course, that every pair of its elements are distinct;
this need not be true for the terms of an arbitrary sequence.

We may, therefore, say also: A sequence of numbers is an
*Because of the form of the genersl term, it goes without saying, that

the initial value of this sequence must he » = 1, not n = 0. The like is often
to be noted in what follows,

72
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enumerzble point set (which has been enumerated in a definite
manner), where one and the same point, however, is permitted
to count several times or even infinitely often. The terminology
introduced for point sets, consequently, carries over, with suit-
able interpretation, to sequences of numbers.

Thus, a number { is designated as a limit poiné of a sequence
{z.] if, for every ¢ > 0, an infinite number of 2, lie in the e
neighborhood of {; in other words, if .

) |2 — ¢ <6 | '\

for infinitely many n. It must now be noted, however, thiat 4
value ¢ which appears infinitely often in the sequence\is'to be
regarded as a limit point of the sequence. The Bolgano-Weier-
strass theorem then says: &

Every bounded sequence of numbers, {2}, hasat least one limit
point {. Ny :

The case in which it has only one limi point is of particular
interest. The relation (1) then holds ;fo\faﬂ sufficiently large values
of n. This is also expressed briefly by saying that (1) is valid
for nearly all n, or for all n aftéra certain one, say for all n >
Be = mo(e).” In this case, ¢ 3stcalled the Limat of the sequence
{z.}, and we write O N

1im.;:a:¥¥ ¢ or & _
with or withoub.the addition: “as # — + «.” The sequence
itself is said .i;ti ‘Be convergent with the limiting value {, or t0
tend to t. .0 : _ .

Cauchy's general convergence principle states a necessary and
sufﬁc%n’t’ condition for the occurrence of this case:

ffﬂ\EOREM 1. A necessary and sufficient condition for the sequence

@3y 21,2 ,...0hwea limit is that, for arbitrarily given ¢ > 0,
a

1
number n, = nole) can be assigned, such that
| Zaip — 2| < € ‘ -
foralln > noand all p > 0. (More briefly: Nearly all z, mus

have o distance of less than € from each other.)

#The last expresgion is used to indicate that the noth term, beyond which
the relation (1) is valid, depends on the choice of & :

i



74
Proof: 1. Suppose z, — ¢. Then, ¢ > 0 being given,
|za — ¥ < }e
for n > n,(e). Hence, for all # > n, and all p>0,

Iz..ﬂ,—z,.l=I(z,.+,—§')—(z..--;‘)|<e,

—the last according to §11 (2). The condition is therefore
TNeCEeRsaTy. ¢ \*
2. If, conversely, (2) is satisfied, the sequence {z,} is houpd&i.
For, let us choose ¢ = 1, say. Then, to this choice of € there
corresponds an n, such that, for all n > n, , 9

lze — 2., | < 1, and hence, |z,] < ]zﬁ\*.{t 1.

The greatest of the numbers |21 ], [22], ...y {2},,1 fy | 2 | 41
is & bound for the set. Now, according to-the Bolzano. Weier-
strass theorem, {z.} has at least one lin}it\}dint, ¢ If it has yet
a second limit point ¢ 5 ¢, then &~N1¢ — | would be a
positive number; and an infinite number of z, would e in the
e-neighborhood of ¢, an infinite\nimber of others, in the e
neighborhood of {“. An infinife “humber of the z, would then
have a distance of more thah ¢ from each other (the reader
should make a little sketch). But that is impossible, because
by hypothegis nearl_y.f{l!s 2. are supposed to have a distance of
less than ¢ from,e{’&h‘ other. Hence, { is the only limit point,
and 2, — ¢, Q.E,D.

Every sque'glc’e of numbers which does not converge is called
divergent. Ih&/sequence converges to 0, z, — 0, it is called a
null sequenee.

relare the following simple, but important, theorems re-
garding operations on convergent sequences, which are proved

‘.gifictly &% in the real domajn:

" THEOREM 2. Let {2} and {z}}
and 2, — . If ¢, ¢ are two arbiirary complex numbers, then the

be sequences such that z, — ¢

sequence {w,} with the terms Wo = €2, + 'z} is also convergent,
and w, — ef + ',
TaEoREM 3. Under the same hypotheses as in the preceding

theorem, the sequence [w,} with the forms W, = 2z.%) 18 alsp con~
vergent, and w, — {7
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TuEOREM 4. If 2, — {, all 2, 5 0, and { # 0, then the sequencs
{w.) with the ferms w, = 1/2, 18 also convergent, and w, — 1/¢.

TaEoREM 5. If 2, — ¢, and if {2} ds ¢ subsequence’' of the
sequence {2,}, then also 2z, — [

27. Sequences of real numbers

If ali the terms of a sequence of numbers are real, it is called,
briefly, a real sequence. Since such sequences are special Cases
of “complex” sequences, the considerations of the preceding
paragraph are also valid for these real sequences {x.}. Several
new details arise here, however, in connection with §24%° ©

A sequence {x,} which is pounded on the left-has a well-
determined greatest lower bound +, which is char;a(;‘%riz’ed by the
following two conditions: There is no I, < -y;}ﬂiﬁ, for an arbi-
trary ¢ > 0, there is at least one Z. < ¥ I0e7A corresponding
statement holds for the least upper bound=y’.

1t has also a well-determined lowet litnit g, in symbols:

liminf 2, = 4 O " fim 2. = &

which satisfies the followig;x.g{fii;g) conditions: For every e > 0,
ab most ﬁiﬁ’tgly many &, < g — §
!?u!;\‘ﬁlﬁnjtely many &, < p -+ &

And a correspdnﬁi}ig statement holds for the lim sup &, oF lim
#, = u'. Tt i€ tlear, aceording to §24, without further comment,
when to Sett a’ﬁy one of the four numbers spoken of equal to .
Obuithisly the real sequence (2] is convergent i, and (mlg,: a')f,
B *‘\:L”hand the common value 45 finile; this number is the limil
‘Gf\}he sequence. ' o
AN YA real sequence {z.} 8 called monolonically ncreasing, if
NN always x, £ Zanr monotondcally decreasing, if always =
Y %.+1 . For such sequences we have the important
Trmorex 1. A monotonically Tnereasing sequence is convergent
if, and only if, it s bounded on the right; @ maonotonically de-
creasing sequence, of, and only o, @ is bounded on the left.
SITf foy , gy enny Kiny- - 18 80Y {nereasing sequence of natural numbers,
then the seqt'xenne {z.'} with the terms ea = as, is called 2 subsequence
of {z.i. . .
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For, its lim sup (or its lim inf) is obviously its only limit
point. It is therefore also the limit.

Now we can give the Dedekind cut a form which is often
handier for applications: Let {e,} be a real, monofonically in-
creasing sequence, and {al} a real, monoionically decreasing
sequence. Moreover, let always a, < 4, . Finally, let a; —
6, = I, — 0, Since the interval {a. , ;) then eontains the next
interval {a,., , @..;), We say, for brevity, that we have a nesz\<
of intervals. {The lengths, 1. , of iis intervals form a null se-
quence,) Concermng it, there ig the following principle of nested
tntervals:

TarorEM 2. Tkerc is always one, and only one, z&n‘t whzch
belongs to all the intervals of a nest of inlervals. 4

For, according to the preceding theorem, the‘sdquences {a,}
and §a.] are convergent. Let » and 3" be theJ\r respective limits.
Then, moreover, for every n, "

1‘

Hence, 2’ = 3}, and this point belhngs to all the intervals. A
number A* distinet from 2, hQWéver, cannot also belong to all
the intervals; otherwise the leno”ch of every interval would have
to be at least equal to the (positive) distance hetween A and
A*, whereas the lengths.J, ‘Were supposed to tend to 0.

The matters dealt‘with in this paragraph and in §24 belong
exclusively to the, theory of real numbers and real sets. We
were therefore: ]‘llStlﬁed in assuming that the reader is already
familiar with, them in the main, and in expressing ourselves
briefly, aecordingly. The same holds for the theory of infinite
eenes \t’he real domain, which is treated in the next paragraph.

o, ENEN < a andi"\‘s)\:'—?tél,,.

‘.\n \ 28. Infinite series

\\: A sequence is very often given indirectly by supposing a first
-sequence {c,} to be given directly, and obtaining from it a
new sequence, {s.}, by stipulating that

8¢ = Gy, 31=CO_+01; 2 =¢C+ ¢+ Czy
and, in general,

1) Sa=C+ 6+ o, (n=01,2...
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The sequence {s,} is then denoted briefly by the symbol

(2) > e, orsimply Y

n=0

and is called an infinite series. The ¢, are named, its terms; the
5, , its partial sums. The symbol (2) thus denotes the SeqUence
of partial sums (1). If the latter is convergent (or divergent),
the series (2) is also called convergent (divergent). In the first
case, the bimit, s, of s, 18 designated as the volue or the sum -
of the series (2). The symbol (2) is then also used as & sym\bol _
for the number s itself: RAY,
£ )

Noo”

3) ' D) O = 8 AN
@ Sase

Cauchy's convergence principle of §26 now yields immediately
Trwores 1. The series 3 ¢, is convergens of, and only ¥, after
having chosen e >> 0, ant o = np(€) cg@hvays be assigned so that

{4) lCnM. + Cnt2 + ;‘.\"i\:-l_ cn+p.| < & .

for all m > no and all p > Oay N -

This theorem leads at onge to the following two:

TrEoREM 2. The terms,of a convergent series 3, € form a null
sequence: ¢, — 0. N _ :

Because, for p~%\\l, (4) asserts that | €asr | < € for all n after
a certain onek\ " _ '

TuporeM 3. 1f the series 3 el (which has non-negative real
lerms) gmivérges, then the series Z ¢, i3 also convergent.

Becdude, we have always (see §13, 1). _
N N A 1§ Gass |
W\

N " All these things are formally the same 28 in the real domsain;
O even the definition of absolufe convergence:

VvV B o
DesiNiTION. A series S, en s called absolutely convergent, if

the series ¢, | converges. If 3 ¢, is convergent, but > | 6198
& el ! conditionally {or Sonly

not, then . ¢, is. called, more precisely,
conditionally”) convergent.

In virtue of this definition
the absolule convergence of series

and Theorem 3, the question of
of complex terms is completely
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reduced to a convergence question for series of non-negative
real terms. We can therefore formulate immediately the fol-
lowing important criteris for the absolute convergence of a series
Y ¢, of complex terms, since they are simply the well-known
convergence tests for the real series ) | c. |.
1. Convergence criferia for the absolute convergence of series of
complex terms:
1. > ¢, is absolulely convergent if, and only if, the SEGUENCE
of real, monotonically increasing numbers, . A\
=lal+lal+ - +lal
8 bounded. N
The following eriteria have the character of only\h‘ecessary
eonditions, First, from 1. follows immediately, fhe so-called
mmpamson lest: : d
2. If 3 v, is a convergent series of posztgw}veal ferms, and if
always } ¢, | £ v, , then the series D ¢, if\dbsolutely convergent.
The following two are partieularly 1Enp0rtant for application:
3. 2 ¢, s absolutely eonvergent, zf E}m‘e exists o positive number
v < 1, such that nearly all quotwmé

Py
Cﬂ
®) ].;‘-“»f <.
\ .
Or we mmay say W
3, D e s absglutely convergent, if

(6) AN Tip | &
x'\w

{
“\‘

(Fon@{ﬁ) is satisfied, then also A = v < 1. And if X < 1,
then, (&) is satisfied with, e. gor =304+ 1) < 1)

;4, ¢. 8 absolulely convergent, if there exists a positive nume~
\bér ¥ < 1, such that nearly all redicals

@ Ve | £ +.

For the same reason as in 3., we may express this as follows:
4. 3 ¢, 1s absolutely convergem! if

® lim Ve, [ =2 < L.

=\ < i,

0
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It is divergent, if X > 1 (because then the terms of the series do
not form a null sequence).

The eriteria 3. are called rafio fests; the criteria 4., radical
tests.

I1. The rules for operating with convergent series are also
formally the same as in the real domain, and follow likewise
from the corresponding rules for operating with convergent
sequences of numbers: "

1. If 3 ¢, and ) €. are two convergen series with thete-
spective sums s and &', and if ¢ and ¢’ ave two arbitrary c@mples
numbers, then the series S

3 (een + €ed) SO

is also convergent, and its sum is equal fo.cs el

(Proof aceording to §26, Theorem 20\ We say that con-
vergent series may be multiplied (termby/term) by @ constant,
and may be added term by term. \\ v '

Let {k.} be a sequence of natieal numbers, in which every
natural number (possibly also.l)-appears once, and only once.
Then the series 3. ¢, , With&n = Cx. s is called a rearrangement
of the series 3 ¢, . 8N _

2. I the series 3 ewis absolutely convergent and has the sum
s, then every one of-dls Tearrangements, 3 el , is absolutely con-
vergent and has'@lle same sum 5. ' . _

Proof: Letde,> 0 be given arbitrarily. Then, by hypothesis,
m can be,digsen so that :

©) D Newr |+ lomns | 4 o0 el <6

f@@éry p. We now choose g 50 large, that all the numbers
) , M are contained among the numbers ku , kv y - -+ s Kna s

O tadet SR

SDenote by s, the partial sums of 3, ci . Then, forn > 7o,

all the terms ¢ , € 5 - - - Cm BX€ anpulled in the difference
8! — 5, , and only a finite number of terms TEMAT, whose sum,

because of (9), is certainly less than e Hence, for n > ;nn ,
|8, — s.| < ¢ so that (s. — g,) = 0. But then, since §, =

s, -+ (s, — s,), the sequence {s.} has the same limit as the
“We add, without proof, that this theorer: does not hold for series
which converge only conditionally.
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sequence {s,}; i.e., 2, ¢, is also convergent, and has the sum s.
If the same proof is repeated with the two series 3 | c.| and
> |el], it is seen that the latter, too, converges, and, conse-
quently, > ¢/ is absolutely convergent.
3. Let D_ ¢, and 2. ¢, now, be any two infinite series. We
formn the products
et , (k=0,1,2,"‘;l=0,1,2,"'),.\

of every single term of the first series and every single terngpf\
the second. These products can be arranged in the mostxxzéried
manners to form a simple sequence {p,}. To this endy first
arrange the products as in a determinant (¢ = fo{f(‘"ﬁumber,

{ = column number): L&
. % 3
CLs,  Cofl,  Cofh, AN
\/
€l , ach, eth, SO
(10) 33
; ' VY
Clo Cs61 , Colyn,

.............................

The arrangement by diagonalsj§8~then obtained by writing down
the products for which %, +4¥ has the successive values 0, 1, 2,

., running through eaeh diagonal from top to bottom, say.
We get the arrangement by squares, if we take, in succession,
the squares whigh ‘correspond to these diagonals; ie., those
products for whieh k and I = 0, £1, £2,. ...

Every seriés~y. p, obtained in such a manner is called a
product sefies of the two series Y ¢, and Y. ¢/ , and there is
the following theorem concerning it:

I f:.ﬁ;} series 3 ¢, and > ¢ are both absolutely convergent, and
g.q?:d 8’ are their respective swms, then every one of their product

" “8eries is absolulely convergent and has the sum ss'.

Proof: Obviously :

lpol 1o+ - + |2 |

S(leol+ -+ lenDUes |4 -+ el ],

provided m is taken sufficiently large. The sequence of partial
sums of ) | p. | is thus bounded, and, consequently, > p, is
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absolutely convergent. By 2., then, all product series have the
same sum S, since they are merely rearrangements of each
other. If {p.) denotes, in particular, the arrangement by squares,
we have '

o004 -+ + c)lea +el + - + )
=pt+n+t - + Piarnr-r -

From this it follows (with the aid of Theorems 3 and 5 of §26L,\‘
on letting n — o, that S = ss'. _ A

4, Let us group sets of successive terms of a conysrgent
infinite series 3, ¢. , With sum s, by means of parentheses, and

regard each set as a new term; ie., form the series, \\*
$

O ot o) Can o RGN
e+ e +

and call its terms Cy , Ci , - . . . Wersay'that 3 C, is obtained
from 3 c, by grouping terms. QThe}e is then the following
theorem: ™

Let 3, ¢, be convergent and-equal s. Then every series, 2, Cn
obiained from 3. ¢, by grouging lerms, is also convergent and has
the sume sum s. 2\ ] .

For, the sequence;'ﬁ partial sums of Y ¢, is obviously a
subsequence of, tHe sequence of partial sums of 2o

Evidently, if. Y ¢. is absolutely convergent, so is 2 Cn .

5. One hagespeciaily frequent occasion to form such & group-
ing of Jgé?iﬁs of that product series of two series, Z ¢, and
2. cxz”i{r'hich is obtained from the arrangement by diagonals.
I the products in the same diagonal are combined by means

al e
N

»Of \parentheses, thus forming the series

(1 3 (ot o+ Citioa 0 0o,
=il
this is called the Cauchy product of the given seri

last two theorems, there follows: o )
The Cauchy product of two absolutely convergent series 18 ogoin

absolutely convergent, and we have

es. From the
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(12

Zo(cocf.—kclc.’.-l + -

+ et} = (

o

PILA

n=0

(Ze)

Examples of these mafters are contained in the next chapter

and in all of section 5.

Woe finally add, without proof, the following somewhat more
far-reaching theorem, Its proof, as that of every one of the
preceding theorems, is exactly the same as in the real domain.

6. Let there be given, as in (10), an infinite matrix of the { \\

form

4

Coo Cn Coz " W ‘f
Cia Cu1 Cip ,‘:\\ !
&
(13) o) = \
. J
) €za Cn €y
. r :\\.}
L ........ L .\;".’\\."J

If its elements are arranged in any kiﬁrmer to form a simple

. sequence {cn}, and if 2 ¢, is absohxtely convergent, then all
rOW &erles

<N
w

14) §Euc,‘, =Z, k=012 -,

and all “column sel\éi}’

,\; ZCH=S;,

' k=)

15) =0,1,2, -4,

are abﬁolutely convergent. The same is true of the series

dZ 8, , and we have

o

<\(1\6) g Z E Cp o«

/ =0
{Cauchy's double-series theor em.)



CHAPTER VIII

POWER SERIES

29. The circle of convergence

Those series 3 ¢, are of particular importance for the theory’. ®
of functions, for which ¢, has the form a,(z — 2,)"; that i is, the
series )

.IZ-O a.{z — 2p) ¢ \\ \

(1) K¢
=a,+ aiz —20) + - @t 20" +

Such a series is called a power series with the “center” z, and
the “coefficients” a, . We think of 2, aiid(the ¢, as given, and
the question is: For what values of‘}us the given series con-
vergent, for what values not? ¥

Examples, 1, z, = 9, all b = 1, “This gives the so-called geo-

melric series, N
e D=1

LR ] x 3
The comparison tesf\radlcal test, or ratio test, shows that this
series eonverges absolutely for 2| < 1. For {z] =2 1itis

divergent, bedause then the sequence of terms does mot tend
to 0, Thu,s\the geometric series is absolutely convergent pre-
cisely ’E.he interior of the unit eircle, divergent everywhers
eise..?n é, moreover, 2* — 0 for |z] < 1, we have for the
partial sums;

O + 1 z 1
&\ w 1=z _ -
Mzt o= i-z 1~z 1—-2°2"1Z¢

Hence, the linear function 1/(1 —~ 2} is represented by the geo-

metric series in the interior of the unit circle:

o=t (2] <D
83
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2. The power series

® e-n+ESL oD, e

is, as is just as easily ascertained, absolutely convergent for
all z of the open cireular disk |z — 1| < 1. It is divergent
for those z with |z — 1| > 1. We leave open the question of
convergence at the boundary points |z — 1] =

3. The power series 5

) L4z 45 + 5 i;—

is, as is shown immediately by the ratio test, abs wtdly con-
vergent for ell z. It is therefore called everywhe(e‘ Jconvergent,
Further details concerning this series appearJrichapter 12.

4. The power series » n'z" can convergdfor no z = 0,
because for & z 7 0 the terms of the setiég)do not form a null
sequence. Such & power series is called\?g,bwkgm convergent.

The typical behavior of arbitraryspower series is revealed
already by these examples, for \ivg‘h’a,{re the

FunpamENTAL THEOREM. Let 3. a,(z — 20)" be a power series
which is neither everywkere comergent nor nowhere convergent,
Then there exisls a deﬁn’rfte positive number v such that the series
converges absoluiely, %@ all points of the open circular disk
|z — 2| < 7, buk diverges ai all points z with [z — 2| > ”'
At the boundagy(points, | z — 2z, | = r, it may converge or diverge.™

The clrcle\f 2— 2| < ris therefore called, briefly, the circle
of convergente, its radius, the radius of convergence, of the series.
If it igeverywhere convergent, we set r = + o if it is nowhere
convergent, 7 = 0.

(We furnish the proof by showing at the same time:
\J CororLary. The radius of convergence of the power series
> .z — 20)" has the value

1
T lim Ve, |

#These poinis will generally be left out of consideration in what follows.

(5)
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Or, more precisely: If we set Iim 7| a, | = g, then

Vu 0<p<t+m
r=4i4w according as p=0
] = 4w

For suppose 0 < u < + «. Then, for fixed ¢,

O\
e \
lim ¥|afe —2)" | = |2~ 2| ':‘.\

Hence, by the radical test, the power series is absolutelyxcen—
vergent for |z — 2, | < r < 1/u, divergent for {z | > .
If 4 = 0, let ¢« > 0 be chosen arbitrarily. Theh\\nearly all
values \/I‘a,.—l < e If 2,5 2 is an arbitrary \point of the
plane, nearly all values Ve, | <1/2]2, — 2} Consequently,
for nearly all terms of our power series, we have :

| aue — 2)" | <72

It is therefore absolutely convergépt at z = z , by the com-
-panson test. Sinee this is, of ceu.rse also the case at 2 = # , it
18 everywhere convergent, '.~'a

If, however, u = + o, t,heﬁ, for every point 2, # 2, , we have

hmo\w; i:a..(zl z2) | =+,

80 that the powen series is divergent at z, . It is thus nowhere
convergent. ;"

Since the\three cases considered are mutually exelusive, and
furthe\a?sés do not exist (because 7| & | = 0), it follows, in
adcht ‘That the conditions stated for their oceurrence are not
only aufﬁelent but also necessary.

m~ “The power series

\E o+ 200z — 2) + -0 + nale — 2T+
6) - -
= Y onale —2) = Z_; (n+ Dannl — 2

is called the (formal) derivative of 3 6,(¢ — 2)". Due to the
fact that ~¥n — 1, the former has the same radius of con-
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vergence as the latter. The same is slso frue of the formal
integral:

(7) aole — 25) +

— zu):ﬂ-l +... .

+ 1
30. Operations on power series

In our further considerations, we shall assume that z, = 0,
which is obviously no restriction.** According to Rule IT, 1.in(’
" §28, it then follows immediately, that a power series may b
multiplied term by term by a constant, and that two poWer Sel‘lés
may be added term by term, 3

(1) Yad+ b= Xlat bu>z?5;§\

provided that for each of the series, z lies in th,é\z'mﬂor of the
eircle of convergence. Under the same con@tmns we may also
form their Cauchy product (§28, 11, 5): ;

@ (X ad N> ) = 3 {abg )«ai By C+ abod,

and we see that this kind of pmduct formation is of particular
importance for power series, By.repeated apphcatlon, it follows
that the powers of a powetseries, (35 ¢.2")°, (20 aw")’, ete.,
can be represented as pogver series, so Iong as z lies in the interior
of the circle of converg\ence We set™

@) s = Tar =123 ).

To master Ihe division of power series, it suffices to represent
the recipr;{t:al value of a power series,

WO~ 1 _ 1 1
’g;\&h\—i-alz—I-azzz-{—--‘ B 4,4 a2 22 4 - ’
NS o

o

{ \igain as a power series, assuming that g, # 0. If we set a,/a, =
~—b, , the problem is to represent

1
4
) 1= Get b2 F 9
5For we can set (2 — ) = #’ and then drop the accent.
EWe shall not investigate the formation of the coefficients af¥ for larger
values of k; it is not imporiant for what follows.
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as a power series: If we place
(5) Bzt bt 4 oo =, | bz| + b2+ =W

and if | W | < L, and hence also | w| < 1, then, according to
§29, Example 1,

1

— 2 LU ]
{6 l_w—l+w+w+
By virtue of (3), we obtain from (5) the expansions ’\{\
w=bg+ b + o <O
(7 w? = b{2': + b(z)zz 4o A \/
w® = b¥z 4 b2 + - K7, N
..\~~

......................

Since all the series used thus far are alS(\\ﬁconvergent if the a.
and b, and z are replaced by their respeetive absolute values,
the column series in this array are Eabsolutely) convergent; and
if we set R

b+ b7 +3¢3> + e =0y
then (according to §28, II 6)
\

® ez (t'{}e,\sum of the row series) = Z w".

i=1

Hence, With,tli,ehoeﬂicients ¢; thus caleulated,
PN

x:\"‘: 1 - .
(9) \"I‘-’—(blz+bzz"+ 35 14eeted + -,

r@hed that 2 lies in the interior of the cirele of convergence
"of ‘the series (5), and that the sum of the second one of these
: Series is less than 1.%7 (For & more convenient caleulation of the

coefficients, cof. §41, 9.)
By means of a trivial generalization of the last consideration,

sIn §35 we shall see that this is the case for ali points z sufficiently close

to 0. .
57This too is automatically the ease for all points lying sufficiently close

to 0.
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one can prove, finally, the following more far-reaching
TrEEOREM. Let

(59 w=bz+4 bz + ---
be a power series with posttive radius r, and let
(6") m=Cn+.8xw+|82'w2+"‘

be another power series, with positive radius R. Then, for oll 2 ZQ&
than r in absolute value, and such that AN

") [bz | 4 [b2* |+ -0 < RS A=

we may “substitute” the first series in the second. Thak 'is o say:
If we form equations (7) as before, and muliipl ‘t&se, in succes-
sion, by By, Bz, ++ - , then the column series Of the resulling array
(7)) are convergent. And if we set their respettive sums equal to
€2, 62", . . . , then the power series (3"

89 6o + iz + o o

\
is also convergent for the aforemenizoned 2.

With the use of concepts which are explained more precisely
in the next chapter, we.dan add to this: If (5") represents the
function f(z), (67) thefunction g(w), then the power series (8')
represents the comggq\sv?pe Function g(f(2)).

&This too is s,utc.)%tically the case for all points lying sufficiently close
to 0. O

S\ W

"N/
\



SECTION IV ¢« ANALYTIC FUNCTEONS
AND CONFORMAL MAPPING

N -

CHAPTER IX \

FUNCTIONS OF A COMPLEX VARIABLEO)

31. The concept of a function of a complex {aﬁ\abfe

The concept of & function is defined in the domplex domain
formally the same as in the real domain: 5\

If SN is an arbitrary point set, and if A.i8"allowed to denote
any point of M, then z is called a (cq'ﬁpléx) variable, and Pt is
called the domain of veriation of z,\Now, if there exists a rule
by virtue of which a certain new aumber w is made to corre-
spond to every point z of 9%, wis’chlled a {single-valued) funclion
of the (complex) variable z; in symbols:

O
1 0'\’ = ()l
W O™ fe

where f (or any other suitable letter, such as F, g, h, etc)
stands for the Prescribed rule. MM is called the domain of defi-
nition of thefuiction, and z, its argument. The totality of values
1 which cofrespond to the points z of I, is called the domain
of valugsief the function (over ).

Imtthe following, we shall consider only the case that It is

& (circular region or the entire plane {sometimes with the ex-

SNclusion of certain points) and that the functional value w =
§(2) is given by means of some simple closed expression or as
the sum of & power series. :

In section IT we became acquainted with the linear funciions.
The rational functions constitute an obvious generalization:
these are the functions whose defining rule combines the variable
z with any constants by means of the rational operations, and

89
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they ean therefore be expressed in the form

(2) bo + blz + 5222 + i baz
a~+ az+ - + a2

If only the infegral operations are employed, the expression is
called an entire rational funetion, and it can be expressed in the
form

O
(3) %+ a2+ 6d + o0+ ap AN
These and the other so-called “elementary functions” iar'é dis-
cussed in somewhat greater detail in section V., Every “power
series defines, in its circle of convergence, a funa{tgon of the
complex variable z. &

The geometrie interpretation of such a function of a complex
argument is considered in the next chapter\\l

<
32. Limits of ﬂ:s?gqfwns

Let ¢ be an ¢néerior point of &ht;'domain of definition of a
funciion w = f{2). Then we, saya—formally precisely as in the
real domain—that N

ey 1@ - w&i\(or w—w) a5z,
or X '\\"}
@ SO limfR) =,

PN g

if one okgiﬁ”foﬂowing two conditions is satisfied :**
1) S@W’mg chosen ¢ > 0, it is possible to assign a § =
5(e)> 0 such that

~& i@ —wl<e ©<|z—t|<d),

" for all values of 2 which beleng to the domain of definition of
f(2) and satisfy the condition ) < |z — | < 6.

2) For every sequence of numbers {z,} which approaches the

limit { and whose terms, all different from ¢, are taken from the

®3ince no mention is made, in the following conditions, of a functional
value at the point z = [ itself, f(z) need not be defined at .
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domain of definition of f(2), the sequence of the corresponding
functional values w, = F(z.) approaches® the limit w.

These two conditions are fully equivalent. It is obvicous that
the second is satisfied if the first is, because nearly all z, lie
in the s-neighborhood of ¢ if 2, — {. Conversely, if the first
condition is not satisfied, this means that an e > O exists
having the property that points, z, for which | f(2) — @ | Z &,
lie in every neighborhood of {. But then one can also assign &
sequence |z,) of such z-values, which approaches {, but f{}
which f(z,) does noi approach w. )

Since the definition of (1) and (2) is formally preclsely the
same as in the real domain, the same rules hold f()( operalions
on limils of functions in the eomplex and real dom

. If ¢ is an interior point of each of the dottiains of deﬁmtlon
of the two functions fi{z) and f.(2), it m'ilso an interior poing
of the domain of definition of the functiép»

afi@ + ool
where ¢, , ¢; denote any two comp*lex numbers. Now, 1f asz— {,
f1(@) — @ aﬁd fale) — wa,
then
@ ﬂ@wcdh>+@n@rawm+cwh

in particular, fy¢) :I: fa(2) — w; &= wy, and ¢,fi(2) — o .
II. Under ¢hé“same hypotheses as inI,

\V F12)-12(2) — e .
II]%Under the same hypotheses, and if w. # 0,
Q :' ' LHe) e
~O 12(2)

N asz — {.
On the basis of definition 2), moreover, these rules follow
directly from the corresponding rules for operating with con-
vergent sequences of numbers (§26).
®Whereas in the real domain, the variable can approsch a particular

point only from the right or the left (or from both sides), in the complex
domain, z or z, can approach { from all direciions,
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Examples. 1) If a function w = f{(z) is defined by setting, for
every 2, the corresponding w equal to one and the same constant,
¢, we say that f(2) is identically equal to ¢, or is identically con-
stani. For this function we have, of course, also lim f(z) =
as z — {, and this holds for every point ¢{.

2) Let f(z) = 2 for every 2 Then for this function obviously

lim f{z) = "
im /@) = ¢ Qo
for every point ¢, .
3) By repeated apphcatlon of IL, it follows now, that;‘for
every point ¢, the non—negatwe integral power z* has t.he Hmit
Fasz— \\

2%4

e e

.

4) By applying I. and IL, it follows, frong these examples,
that if f(z) = ap + @z + -+ + o2 I8’ 5}1 arbitrary entire
rational function, then the relatmn \\ N\

lira f(z) ﬁ(i’)

~

is valid for every ¢. QY
5) From this it follows, ﬁnally, by applying T1I., that if
g{z) = by + bz + - -i\Yi',z is a second entire ratlonal func-

£

tion, the relation ¢ N

O 92 _ od
@7 e T

holds for eve?y? Jor which f(¢) # 0. Thus, the limit of a rational
functlon\a.tf every point at which its denominator does not
vanlsh\1 equal to the value of the function at that point.

- "\ il 33. Continuity

\’The situation encountered in the last example is of particular
importance. We set it down in the form of a special definition:

Derinrrion. 1) A funclion f(2) is said to be continuous at an
interior point { of its domain of definition, of

lim ) = £(2).
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If we employ the two definitions of limit given in §32, we
can also say that f(z) is said to be continuous at the point {
if one of the following two (equivalent) conditions is satisfied:

2) To every e > 0, it is possible to make correspond a § =
3{¢) > 0, such that

[f@ — f ] <e
for all z with [z — ] < &% ¢

3) For every sequence of numbers, {z.}, chosen from. tlﬁ
domain of definition of f(z) in such a manner that z, = (e
have, for the corresponding functional values: f(z,) - SO,

In view of the examples of the preceding paragr%ph we call
say immediately: A rational function is contimuous at every
point at which its denominator does not vinish. The entire
rutional funections are everywhere contmuqls

Likewise, from Rules I-IIT {§32), therg\fellows immediately:

If the two functions f,(2) and {5(2) are continuous at the
point {, then the functions \ ‘s

eif1(2) + cafal2), fl(@ fz(z): and f1(2)/f:(2)

are also continuous at thJS pomt ;,—the last, however, only if

55 # 0. O
%X 34. Differentiability
We finally, cazary over to functions of a complex argument the
concept whiall'is in many respects the most important, that of
di ﬁerm@d@ty

Dg§N1T10N 1) A function w = f(z) 18 sutd to be differen-
twbie at an tnierior point ¢ of iis domain of definition, if the lim

\(1) D 0T L m®SE = s,

) z‘_f . e={ z_;,

exists. Its value is called the derivative or the differential quotient
of the function f(2) at the point , and it is denoted by

sifn other words: For a z lying (sufficiently) close to ¢, ‘the fimction_nl
values f{z) and f(¢) differ by an arbitraxily small amount,
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, dfm - dw 2
2 f(g-)! dz ' dz’ w.

If we make use of the two conditions for the existence of a
limit given in §32, we can also say that a function w = f{2) is
said to be differentiable at the point ¢ if one of the following
two conditions is fulfilled:

2} A number o’ exists with the property that to every ¢ > 0

it is possible to make correspond a & = 8(¢) > 0 such that \\~
@~ 10 _ <e
z - g’ s’o'}
foralzwith0 < |z — ¢ | < & A\

3) There exists a number «’ such that, for en :Eequence of
numbers, {z,}, chosen from the domain of dBfihition of 7(z),
tending to { as a limit, and having all its terms different from
¢, the sequence of difference quotients Y

2, — N

Sinee this definition of differentiability is formaily exactly the
same as in the real domain, and since operations with sequences
and limits are performed\exactly as there, the proofs of the
foliowing fundamental%sﬁes of the differential caleulus are also
precisely the same@S8 i the real domain:

If the two funetiohs f,(2} and f.{z) are differentiable at the
point §, then, (7;"

I. the f}u{ation f&) = efi(2) + exfo{2) is differentiable at
the po{ﬁr;‘yand we have

. ~{\ . J) = afi) + e:fi($);
(TN the function f(z} = f.(2)-f,(2) is differentiable at the
. pomt ¢, and we have
F1(@) = FUOSE) + HOF5);

1. the function f(2) = f.(2)/7.(2) is differentiable at the
point {, provided that f,{¢) ¢ 0, and we have

©In the last three notations, the point 2 = ¢ must then be added besides,
or be known from the context,
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ey _ BOFE) = ORI
F = 0}

Ezxamples. 1) If f(2) is identically equal to ¢, then obviously
() = O for every {.

2y If f{z) = z, ii follows immediately from the definition,
that f/({) = 1 at every point ¢{.

3) By repeated application of Rule II, it follows oW, that

d&) _ N
& =8

W ;
\? Py

for every natural number % and at every point &\

4) Turther, by applying Rules I-III, it folleim ‘that the
derivative of a rational function also exists atfevery point at
which the denominator of the function dees™mot vanish, and
that this derivative is calculated accordga‘g to the same rules
az+ b
cz+d

as in the real damam Thus, e.g., \t{he finear function &
e+ d)gatthepomtj‘?é -
I the domain of deﬁmtlgn IR, of a function, f(z), is open
(see §23), and if f(2) is dlﬁﬁrentlable at every point z of this
domain, then f/(z) is_sgain a function defined in I}, and is
called, briefly, the dem‘e!(}twe of f (z) in M. If f(2) is differentiable
in M, we obtain tﬁg\ second derivative, f”'(2), of f(2) in P, and
similarly we arpive at the derivatives of higher order. A rational
function ha;( Jerivatives of every order. Their domain of
deﬁmt:o {s7the entire plane, from which those points where
the demominator of the function vanishes, have been deleted.
%(z) is a function with the domain of definition I, , and
if a'ﬂ values of this function lie in the domain of definttion, %, ,
"‘f a second function, f.(z), then one can form the composite

\ ) function,

has the derivative

F&) = falfi(eD),

whose domain of definition is again %, . For its differentiation
we have, as in the real domain, the so-called chain rule

1V. f’{?’a) fﬁ(fl(g)) fl(g-),
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provided the “inner” function, f.(g), is differentiable at the
point {, and the “outer” function, f.(2), is differentiable at the
point §; = f1($).

35. Properties of functions represented by power series

Let there now be given an arbitrary power series,”

¢Y) o+ az+a+ - = 2 a2 .
. "\
whose radius of convergence, r, is positive {or =).** At every
intertor point of its circle of eonvergence, it has a deﬁmte‘sum
This is, consequently, a function f(z) defined in |z| 1 by
the power series. We also say that it is represented bq\tﬁe power
series, or that it is developed or erpanded in the\power series,

and we write

(2) @ = ZO anz

The properties of such functions rp;&a:esented by power series—
these functions are the only impdrtant ones, as the further de-
velopment of the theory of funcblons shows—are established by
the following theorems: 3%

Turorem 1. The fumcm represented by (2) is continuous af
2 =,

Proof: If p, wﬂ:h\& < p < 1, is chosen arbitrarily, the series
> la.d et is Convergent; call its sum K. If {z,}, now, is any
sequence of rfinhers which lie in the eircle of convergence, are
all d]ﬂerenf{frcm 0, but tend to 0 as a limit, then nearly all
|2 | § 8, 'and for these z, we have

If(Z)—aofsE!aHZ- =Kzl

R\
\ Hence f(z,) — a, = f(0), which proves the continuity of f(z)
at 0.
8As already remarked in §30, it is no restriction to assume that the
center 2 = 0. The following Theorems 1 to 7 are thus also valid, after
guitable changes in wording, for funetions which are represenied by power
series with an arbitrary center 2 .
#The nowhere convergent power series are excluded now, as before.
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From this theorem we easily obtain the 1mportant zdentety
theorem for power series:

TaEoREM 2. If the power series Y, a.c" and 2 b2" are both
convergent for |z| < p, and if they have the same sum fm' all
these z, then the series are zdenﬁ@ml 1.6, 8, = b forn =0,12,.

Proof: First, from

G + a2 + @2" + -+ =bo+b1z+bzzs+ v

it follows, for z = 0, that e, = b, . Accordmgly, at least foz\\
all zwith 0 < 2] < p, wehavealso

l’ X
QP

o+ a2z + - —bl+bzz+ O

Ne/

If we let z— 0 in this equation,” it follows, further, th@s o =0.
Analogous deductions now yield in guccession {he equations
Go = bforn = 2,3,. )

Since it already suﬂices for these deducthns 1f z runs through
a sequence of points {z,} tending to @ /the ‘proof shows, in
addition, that, for the identity of the‘two power series, it is
sufficient that their sums coinecide at énch of an infinite number
of distine$ points which cluster a’b@ut 0 as a limit point.

This identity theorem assert§ %hat one and the same function
cannot be developed in twa chstmct. ways in a power seites: If
it is at all developa.ble 1{1 A power series’ (with center z,), this
is possible in only oné ner.

TeEOREM 3. The\functwn represented by (2) can also be de-
veloped in a poviehseries aboul any other point, 2, , in the inferior
of the circlgnof jeonvergence, as center. Thus, of {&| < v, there
exists alu@ys one, and only one, power semes,

(3) \ *Eobk(z‘*zl)J"'

M postlive radius of convergence 1 , which has likewise the sum
\ )f(2) at those points 2 common to- boih mcles of -convergence; in
fact, we have - . . _ :

(4) b= ):("’}L'k)amz“
n=ll

#Here it is essential that in the limiting process z - 0 z does not have
the point 0 to reprosent (see §32 foatnote 59, - :
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and the radius, 1, , is ol least equal tor — | 2, |.
Proof: z = 2z, + (z — z,), and hence

)= S aln+ @ -zl

n=0

® = Sala+ (re-w .

-0
+ ( T —2) + -+ (2)(3 - 31)”]' ~
N\
If we lma.gme the terms of this series to be written down in
such a manner that the terms containing the same powér “of
(z — z) form a column, we obtain an array as in §28 11, 6,
whiose row sums are then precisely the terms of ser(es 5). The
kth column series, on the other hand, has exactly the sum
bi(z — z,)", provided b, has the meaning assigned in (4). The
cited theorem of §28 would then 1mmed{@ye1y establish the
asserted equality ’

ﬂ

\\

® &= g z,

Q

if the hypotheses of this theorem were satisfied. This is, indeed,
the case. For if we replace all élements in the acquired array by
their respective absolute® values, the nth row-sum equals

fa. ! llz] + }2 — €)D" But the sum over these row sums,
that is, the serieg ™

‘\Z laa | [z [+ |2~z ]
'\‘. L]
1sstlll\@mfergentif0nly lzij+lz—z]{<ror|z—2]<
r —{2 . Therewith all is proved, including the corollary that
the\development (6) has a radius r, = 7 — | 2, |.

‘~THEOBEM 4. The function represented by (2) is confinuous af
every inlerior point z, of 1ts circle of convergence.

Proof: In a neighborhood of 2, , f(2) is also represented by
the series (6), thus again by a power series. Since the latter
represents a function which is continuous at the center, 2z, , of
the series, f(z) is continuous at 2, by Theorem 1.

TueoreM 5. The function represented by (2) is differentiable
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al every point 2, of s circle of convergence, and the derivative
there can be obtained by term-by-term differentialion; i.e., we have

o ) = ):m = 3 4 Dageidt

LT

Proof: According to (6),
&:l(z_l)= by + bz —2) + --- .

z2—2 o. &\
N\
The power series on the right represents a function whjc]:;;i's,\
continuous at z, . From this equality follows, then, immediately”
the assertion:
f’(zl) =b = Eﬂ (n+ Da,..2t - {'.’\;'

TaeoREM 6, The function represenied by, .@); is differentiable
arbitrarily often at every point 2, of s cifgfe( of convergence, and

\
we have NV

n=(

) = by = X+ DD - @+ Bad

or, writien more clearly, \" ¢

S k
® Loy Q= 35 (" F ot

n=i
Proof: For e\(e;;y’| 2| < r, by Theorem 5, we have

x:\“’. . hd n
\s.\.;. ) = 2 [0+ Day2™
N/ a=0
O\ _ ]
Thejde\rivative f(z) is thus again represented by a power series
~with the same radius. Hence, by the same Theorem 5,
N/ .
7@ = X (o + D + a7 ete.
=il
If, finally, we substitute in the series (6) the values for b,
obtained in (8), we get the so-called Taylor series, 1.e.,
THEOREM 7. The function represented by (2) can be represenied,
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for a neighborhood of every (interior) point 2, of its circle of con-
vergence, by the power series

s = 86 - o

The most significant examples of these theorems are given in

section V.
o <\
AN\
O
\ D
. N
\ 3
.'\Q
»
P N
&



CHAPTER X

ANALYTIC FUNCTIONS AND
CONFORMAL MAPPING

36. Analytic functions

While the preceding matters represent an exact transferenpe\\
of the corresponding developments in the real domain, a pros
found difference appears between functions of a real and fune-
tions of a complex argument after the introduction ef differ-
entiability: Whereas for a function f(z) of a real #ariable, its
differentiability need imply nothing at all concerning the possi-
ble higher derivatives,—as is well known, theMirst derivative

'(z) need not be differentiable, or even gehéinuous,—it turns
cut that for a function f(z) of a comp. ex{vériable, the existence
of a first derivative automatically imphes ihe existence of ail
higher derivatives. Formulated more precisely, there is the
following N '

TueoreM. If a function [} Is defined in a region O, and of
it has a deriative f'(2) ’tfw?;e‘, then it also possesses oll higher
derivatives §7'(2), "' (@)pin in &. (By a region is meant an open
and connected point-et; ie., an open set of points such that
every pair of its peints can be joined by a segmental arc belong-
ing entirely to.\t'lijs point set.} '

We ¢ t prove this theorem bere. Tt is rather deep, and
can be pravéd only after further development of the theory of
functiohé’\%;ith the aid of its integral caleulus.® It does, however,
maiké}t appear understandable why those funetions which are

. diffetentiable in regions have been given a special name:

N Drrintrion. A function f(2) which is differentiable in a region
® s called o regular analytic (or also merely: a regular, or simply:
an analytic) funciion tn ®. The region & is called o region of
regularity of the function. At every single potnt of &, the function
5 said lo be regular.

sCf, Th. F, I, §16. :
101
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A rational function is regular in the entire plane, from which
the zeros of its denominator have been deleted. Every power
series represents, in its circle of convergence, an analytic fune-
tion; this cirele is a region of regularity of the represented
funection.

37. Conformol mapping

The behavior of a real function ¥ = f(x) of a real variable
can be visualized in the familiar manner by means of its geo:
metric image in an zy-plane. In the case of a function w =i f2)
of a complex argument, something analogous is noty umne—
diately possible, because each of the variables, z a:ncf w, has
two coordinates. We get away from this d1fﬁcult<,y{hy using fwo
planes, a z-plane and a w-plane. In the first w‘e\ plot the point
z, in the second, the point w = f(2) which\phe’ function makes
correspond to z." In this way, an image\pbint w is associated
with every point of 9, the domain{of/definition of f(2); in
short: The domain I s mapped omthe) w-plane. We are already
familiar with this mapping in the “ezse of the hinear functions
(see section I1). We shall now: determine for arbitrary functions
w = f{z}, what correspond&; \n the mapping, to the properties
of continuity and d.lfferentnﬂ)]hty

The continuily of ‘functlon w = f{z) at a point ¢ is very
easy to interpret % metncally The second form of the defini-
tion given in §33\0bviously asserts the following: If an (arbi-
trarlly small), ‘circle with radius ¢ > 0 is described about the
image point,“s = f({), of ¢, then it is always possible to draw
such a gmall circle (call its radins &) about the point ¢, that
the }Qages of all points in the interior of this circle about ¢ lie
T’V]j?h'}l the circle chosen about w. Thus, the image w lies in a

@rescﬂbed neighborhood of «, provided that the original point 2

& ‘; dies in & sufficiently small neighborhood of ¢. In this sense (but

also only in this sense) we may say briefly: Neighboring points
in the z-plane are mapped into neighboring points in the w-
70r, we imagine that to the point z in the z-plane, the corresponding

funectional value w = f(2) is “‘attached”, and that the point 2 is the “bearer”
of the funetionsl value w.
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plane; or: To a small movement of 2 corresponds alsc a small
movement of the image w.

From this follows, in particular: If f(2) is continuous at every
point of a region, then the image of every continuous curve in
tho region is again a continuous curve.”

Somewhat less simple, but of fundamental importance, is the
geomeiric interpretation of differentiability. We obtain it in the
fojlowing manner: Let w = f(2) be defined in a eircular region
& with center §, and suppose that f{z) is differentiable at (‘
Let the derivative §'(t) be different from 0. We shall fuzther
assume that two distinet points z in & yield also two distincet
image points w," and shall confine the rest of our congiderations
to §. Now, let [ be an arbitrary {oriented) are ia@ihg from ¢
and possessing a (half-) tangent t at {. Then vga;f&ow first:

The tmage curve ¥ also has a tangent, t; 6t image poind
w = (1), and the direction of t' s that Q Wrotated through the
angle am §/() in the positive sense. (0"

QO

L §

N\
\ FIGURE 20

Proof: On #\we choose a sequence of points {w.}, whose
terms aresall different from w, and such that w, — « (Fig. 20).
Let 2z, ,bé»éhe original point corresponding to w, . Then the
sequefioe’ {z,} kes on T, its terms are all different from r, and
2, L\f Hence (see §34, 3), :

> 3

Q) e 8, 15),

z, — §
%Tn particular cases, this curve may degenerate; e.g., i §(z} is identically

eonstant. . L N

#Tn the further development of the theory of fl.lnt‘.tlﬂns, it is ghown ¢ _a.t.
this is automatically the case under the hypothesis f/(¥} # 0, if the radins
of & is not too large, and if f(z) is regular ab {- (Ct. Th. F. I, §34)
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and, in particular (for suitable determination of the angles that
appear),

@ am - @) —am (- D) > am 7).

The twe angles on the left-hand side are the vectorial angles
of the secants from w to w, , { to 2, , respectively. Sirce f is
supposed to have a tangent at ¢, am (z. -~ {) tends to the
vectorial angle of this tangent t as n ~»c. Call this angle r,
and set am f'({} = a. Then, according to (2), )

But this means precisely that ¥ also has a tangent and that its
vectorial angle is equal to r 4+ o, Q.E.D. ,'\\ 3

If we allow two curves to emanate from {, forming’the angle
7, then it follows from what precedes, that theNmage curves
also form the angle v (because the mapping t\m’ns both tangents
through the same angle a); i.e., RS’

The mapping by means of a differentighle function w = Jz) 4
(under the assumptions made) 1sogonal ipitkout reversion of angles.

‘This fact resulted solely from j;he:é‘onsideration of the ampli-

tudes of the left- and right—hjafnﬂ‘ gides of (1). That, corre-
spondingly, also N

A
@ ),

likewise expresse§ an important geometric property of the
mapping, Herp.6n the left, in numerator and denominator, are
the Iengthiﬁf\the vectors from o to w, , ¢ to z, , respectively.
If we call them, briefly, corresponding vectors, then (4) asserts
that’t}\'e'\ engths of corresponding vectors issuing {from { and w
arg.approximately in the ratio 1 : | /(2) |, provided that both
'le;ﬁngths are sufficiently small, We express this, somewhat loosely,
“ad follows: All “infinitely small”’ vectors issuing from ¢ are
stretched in the same ratio 1: | 7/(5) | (which depends only on
¢). The mapping is therefore said to preserve scale (“in the
infinitely small’),
A mapping which, in the sense explained, is isogonal and, at
the same time, preserves scale, is said to be conformal.

o~

N

(3) am (‘w,,— w)—>r+a_ (:..'::
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Summing up, we can therefore say briefly:

The mapping effected by an analytic function is conformal in a
neighborhood of every point at which the derivative of the function
does not vanssh. '

1f we have three points z lying close to one another, then,
according to what has preceded, the three image points w form
a triangle which is nearly similar to that formed by the three
points z,—and, indeed, the smaller the triangles, the greate
the similarity. The mapping deseribed is therefore also said'td
be a simalarity in the smallest parts. ' N

A linear function is regular in the entire plane with"the ex-
eception of at most one point, and, according to §34,-Example 4,
its derivative is nowhere equal to 0. Hence, the precéding dis-
cussion affords a new proof of the isogonalityef the mapping
effected by a linear function, and we see, mofeover, that this
mapping is conformal. We shall become @uaintped, in the next
section, with additional conformal\g;ﬁgmngs.

A\

LY



. SECTION ¥V « THE ELEMENTARY
FUNCTIONS

CHAPTER XI

POWER. AND ROOT. '\\\
THE RATIONAL FUNCTIONS O\
38. Power and root ) \\

The simplest of the rational functions, aftgepﬁié’linear fune-
tions which we became scquainted with injsection II, are the
powers, i.e., the functions PN

Ak
\ Y

1 w = Zk:\\\‘\\

where k denotes a natural number which we shall immediately
think of as being greater thain.“i:.'We already know that such a
function is continuous and différentiable, and hence analytic, in
the entire plane, and that its derivative is w' = kz*~*. Conse-
quently, the derivati\ve\\is different from 0 in the entire plane
except at the origin{ The mapping of the z-plane effected by the
function (1) is; t{lerefore conformal everywhere except at the
origin. A

We shall jﬁ\'festigate this mapping for the case & = 2, i.e.,
the ma;p,pg}g by means of the function

(2“):\’\\‘“ w = 23,

. ;'@Iﬂewhat more closely. We show first:
\J Bu means of (2), the (open) right half-plane is mapped, in o

one-to-one and, without exception, conformal manner, on the w-
plane which has been cut along the negative aris of reals; e, on
the totality of poinis in the w-plane which are different from 0
and the negative real points.

For if we set, as heretofore, [z| = p and am z = ¢, then,
106
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according to §11 (6},
(3} jw] = o, amw = 2¢.

Now, if # describes the semicircle lz| =0 —7/2<¢ <+ /2
which lies in the right half-plane, w describes the full circle
|w]| = p°, —7 < amw < -+« which has been cut at the point

i

FIGURE 21

-1, and both eurves correspond in & one-to-efie manner (Fig.
21). If we let p run through all values < p <+, o also
runs through all these values, and agsimés each precisely once.
Herewith the assertion is already yroved, because the de-
fvative of our function (2) vehishes nowhere in R > 0
The one-to-one character ofithe mapping is retained if the
positive axis of ima,gina:ié?s % added to the right half-plane
R(z) > 0, and if the Sfupper” boundary of the cut w-plane i3
added to the latten;'%\e isogonality, however, is 'destroyeq s.xt
the origin, becafigh, “according to (3), the angles at the orgn
are doubled under the mapping. .

In the safe manuer, we see that the left half-plane R(z) <0,
too, to which the negaiive axis of imaginaries has been 'a.dc%ed,
(for«whose points, consequently, 13/2 < ¢ S 3n/2), is like-
Wisé%pped by (2), in a one-to-one manner, on the w-plane
which has been cut and bounded exactly as before, and that

he mapping is conformal except at the origin.”® The full z-plane
/ is thus mapped, in a clearly percel

ved way, on the doubly

covered w-plane; i.e., to every z corresponds precisely one ,
but every w is obtained for precisely two values of z (which
differ only in sign),—with the exception of the. value w = 0,

®This, of course, also follows directly from what was proved previously,

because (—gz)? = 2%
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which is assumed only for z = 0. For the purpose of visualizing
more clearly this double covering of the w-plane, it is useful to
imagine one of the two previously obtained copies of the cut
w-plane to be placed upon the other. If we then fasten the two
origins together, and join the sheets “crosswise,” i.e., fuse the
upper boundary of each sheet with the lower boundary of the
other,” we obtain a peculiar configuration, which is called a
Riemann surface. On it, every point different from 0 appesrs
twice (at superposed positions), the origin, however, only prec\
cisely once. Our function w = #* now maps the (simplel))
z-plane on this Riemann surface in a one-to-one and alsopapart
from the winding point or branch-peint at 0, conformal manter.—
However, we cannot enter here into a more detailed\treatment
of such Riemann surfaces.™ L

We also obtain a good insight into the mapping effected by
{(2), by using Cartesian coordinates. Let nsset 2 = ¢ + 1y,
w = u -+ 4. Then, according to (2), O

) N\

4 U=z — 3 v:\ﬁ 2ry.

From this we infer that the poinits 2z lying on the hyperbolas
z — y* = const. go over into:the points on the lines % = const.
Likewise, the hyperholas 22 const. go over into the straight
lines v = const. Because of ‘the isogonality of the mapping, every
hyperbola of the one.\'fshnjly intersects every one of the other
family at right angles. - :

It is equally @asy to see, from (4), that the two families
of straight lines'z — const., ¥ = const. are mapped into two
confocal families of parabolas, with focus at 0, which again are
orthog gl to each other. '

With the use of polar coordinates, the mapping effected by
the'fanction (1) with k > 2 is just as easy to study as the case
k.= 2. We have merely to replace the half-plane by an angular
region with vertex at 0 and an aperture of 2r/k radians; and
the double covering of the w-plane becomes a k-fold one. Even

_This can be cartied out only in imagination, since the penetration of
the two sheets of a material model is merely imperfectly realizable.
0 German: schlichi.-

"For a discuasion of thege surfaces, see Th. F. I1, section IT,
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when Cartesian coordinates are employed, no difficulties in
principle arise. The curves, for k > 2, corresponding to the
hyperbolas and parabolas, are merely not so simple any more;
they are algebraic curves of the kth order.

Since the mapping between the simple z-plane and the k-
tuply cavered w-plane is (if we disregard the origin) one-to-one,
we can, without further ado, interchange z and w.in the entire
discussion; i.e., we ean regard w as the given value and z as the
valie associated with w, We then immediately obtain: N\

For a given w % 0, there exist precisely k distinct values € for
which 7 = 1w, These values all lie on the same circle qbou the
ovigin in the z-plane, and constilute there the vertices af\o regular
k~gon. Ky ’
Tach of these values is called a kih rool qf.\xw:’in symbols:
2 = /. This symbol is thus—in antithegig:bo the usual con-
ventions made in the real domain,—by\mature, & multiple-
valued, namely, a k-valued, symbol. \.: v

This can be realized, independenily of what precedes, a8
follows: If w = o (cos ¢ + ising, 2 =» {cos ¢ + % sin ¢), then,
because of (1), we must have \y )

(5 P, k=

Now, p and v are pqsiﬁ}re. Therefore, the first of these equations
is satisfied, for givet o, by precisely one value p, namely, by
the root p =¢ WY/ (which, in the rea] domain, is uniquely de-
termined and;again positive). However, gince the equality of
two angle:gwmerely signifies their congruence mod 2, tht? seconf:l
equation”is satisfied by & distinct angles ¢, namely, n addi-
1 \6‘ the value ¢ = (1/k), the values (1/B)(¥ + 2m),
WY + 4w, ..., (/R + 2 - 1)), and only these.
“Hence, \/w , for w # 0, has the % values

\V;(cos'p_‘;czw-i—ésinw-;m),
»=0,1,2 -+ , B — 1o

#

(6)

/0, on the other hand, is to be set equal to the sole value 0.
As the principal value of Y we designate that one of the
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values (6) which is obtained by taking for ¢ the principal value
of am w and setting » = 0.—We cannot enter further, hers,
into the study of the root functions.

39. The entire rational functions

The close investigations of the entire rational functions or, as
we say briefly, polynomials, that is, the functions of the form

o~

(1) W=t + a2+ @i + 0 + a2 N

is the principal subject of classical algebra, into a discussion of
which we shall, of course, not enter here. We should, Hewever,
at least mention the theorem which oceupies a_ @i‘ticularly
important position in it, and which has, for that/feason, been
named the fundemental theorem of algebra. It Kas been (cf. §4),
above all, the possibility of proving this theorem, that has pre-
pared the way for the universal recognition. of the complex

numbers, AN
FuNDAMENTAL THEOREM OF Apengi'gl: Every polynomial in z,
@ 90 = a + a@ft - + 0,2 (a, = 0),

whose “degree’ p = 1, can .béiiieéomposed into.precisely v linear
Jactors; ie., there em’séo ® (ot necessarily distinet) numbers,
215 % .00y 2,, such (G

®) 06 S0 — 2)e — ) ... (2 — 2),

In addition‘tc} .the proofs given in algebra, there are several
purely functisf-theoretical proofs, two of which are to be found
in Th. F. I78828 and 35.

The@stinct numbers aong z, , z; , . . . , z, are called, briefly,
the m'bts or zeros of the polynomial (2), and we shall denote
themt by {1, fa ..., 0, 1 Sk < p). If ¢, appears among
\*gr, vy % atotal of o, times, (v = 1, 2, ... , k), we say that

$+ 18 a root or zero of order «, . Naturally, @, + o, + -+ +
@, = p, and instead of (3) we can write

4 9@ = a,(z — £} @ — )™ .. (2 — )™

This representation of a polynomial is called its factor repre-
sentation.
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40. The fractional rational functions '

A rational function f(z) is said to be fractional, if it cannot
be represented as an entire rational function. f(2} can then be
brought into the form

- h@
(]-) f (z) - Q(Z),

where A(z) and g(z) are polynomials. Concerning these fraetional\\‘
rational functions, too, we shall speak of only one theorem hete,
the theorem on the partial-fractions decomposition of rettonal
functions, which is usually proved in algebra, but which ¢an be
proved in the theory of functions only after further, develop-
ment of the latter (see Th. F. I, §35). A rational‘function of
the particularly simple form \4

c \\“
CERIENS

where both ¢ = 0 and ¢ denote coteplex numbers and ¥ denotes
2 natural number, is called a parfinl fraction. With this designa-
tion we have the following +3

TrarorREM. Every mt@onai ‘function can be represented—and,
essentially, only in prepisely one way—as the sum of an enfire
rational function drd o finte number of partial fractions. .

More preciselys If we are concerned with the rational function
(1), and if jt§’ dénommator g(z) has the factor re_preseutaton
given in §39.(4), then there is exactly one polynomial g(@), and
there _are‘exactly p complex numbers Ca , such that f{z)

posg@eé"the representation

*
~

Cla,

N " . &1 L1z . A
N\./ f(z) = q(z) +z — 5_1 + (z_ g.l) + + (z _ ;,l)dl

h
4

Cra.

AR
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Simple assertions concerning the conformal mapping effected
by rational functions which differ from the linear funections,
can be made only in special cases.

O
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CHAPTER XII

THE EXPONENTIAL, TRIGONOMETRIC, -
AND HYPERBOLIC FUNCTIONS

41. The exponential function

The power series <& >

@ _n L3

2
=L\
is, as was already established in §29, 3, everywhere convergent.
Tt therefore defines a regular analytic functish.in the entire
plane, or, as we say briefly, an enfire fun{it;'o@.olt is well known
from the differential and integral cale

D Lot i+ o+t =

ulus), thas, for real z = 2,
the series (1) represents the exponenghfunction ¢°. The fune-
tion of a complex argument repredgnted by (1) in the entire
z-plane is therefore also called the' ezponential function, and is
denoted by ¢’. The power &\IS thus defined for complex ex-
ponents z in a m'ngle-value\d manner by means of the relation

A\ N\ w

¢ &N\ .+ . f"_

(2) ‘ e = ;n!.
We are entitledto make this definition, first, because the symbol
¢", for complex z, has had no meaning at all up to now, and
further, Mecause the meaning now laid down proves to be

usefy h‘d significant, as subsequent investigation will show.

Matgover, according to §35, Theorem. 2, there can exisf.,.in
"%daition to (1), no other power sories with 0-as center, which

N\}as, for the real values of z = % lying in & neighborhood of 0,

the same sum ¢ as (1). Our series confinues, 3 We say, the re_al
Junction & ino the complex domarn. The following facts wﬂl
show that the properties of the real function ¢ also belong, in
large measure, to the analyiic function ¢"; we shall, however,
become acquainted with important new properties of e'. -

1. In the complex domain, as in the real domain. we h;v;
I
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the addition-theorem _
(3) e:, = 3’l+".

For since the series (1) is absolutely convergent for every 2, the
series for ¢”* and ¢** may be multiplied according to the Cauchy
rule (see §28). The nth term of the product series then becomes

n 1 2, z'll—' 52 . o\
nI+(n—1)'1|+ "t )rp1+ SUFTEER
= l,[z'{ + (n)z’l‘"zz + -+ (R)Z'{"z; + OF 52]
i 1 ¥ .‘.:‘;
_&atn) R\
n! - i ‘.‘x\\.
Consequently, we have indeed RN
i z ): _ Z‘”:\(zl 4‘22)

n=0 n‘ o nl n=0 \\
\

which proves the assertion (3). «

2. Formula {3) now enables'us actually to calculate the value
of ¢* for given z. For if z =¢ ~:t: + 4y, then, according to (3),

THiy x iw

e\\— € =¢ e .
By (2) we have, fuN;her,

(@y) % 2k+1
3 g N Z( 1) (2k)1+3 E){ 1) (2k+1)'
Here qm, the right-hand side are two real power series whose
é known, from real a:nalysm to be cos y, sin y, respec-
tweBr These values, as well as ¢, can be read off, for given z
"\1& y, from the ordinary loga.nt}umc—tngonometnc tables, and
\ / ean therefore be regarded as known. Hence, the formula

(4) & =& = ¢'(cos y + ¢ sin y)
renders possible the numerical calculation of &° in a simple
manner.

3. We read off from (4), that
6) le*|=¢*" and am{) = 3@,
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and further, that the direction factor (see §11) of a complex
number can now be written in the simpler form

{6) co8 ¢ + i8in g = &'".
According to this, we have, in particular,

(7) e?ri = 1,

. . —eire .
et == =1, =4 7= —i

o~

Furthermore, we see that the functional value ¢° is 'féu\b\’ if,
and only if, sin ¥ = 0, and hence y = J(2) = kx,—in-Other
words, if, and only if, 2 lies on the hereby specified\family of
parailels to the axis of reals (or on this axis itselff™

4. Formula (7), in connection with the add{fi@n-theorem 3),
now shows that, for every z, O

ez-r‘zru' = e: 'ezr:' ’T_j{&:},

Thus, the exponential function i&‘pgri}idic with the period 2g4:
Its value does not change if thé variable z is increased by 2.
Of course, we now have more‘g’én’e-rally, for every integral & 2 0,
& T = '
At points of the e-pldite which result from each ofher by means of
a single or repggt&i application of the translation (2x3) (or
(~2w1)), e® has.the same value.

5. The cofiverse is also true: If the equation e = ™ is valid
for two,p‘sixﬁ;s 2, and 2, , then they differ only by an integral
multiplé’df 2ms; i.e., we must have

o 2, = 2 + ki,

~For from ¢ = ¢ it follows, first (according o (3)), ‘that

a \ W

O

™™ = 1. Now, if

) zHiv _ 1’

e =¢
then, by (4) and (5), we must havee” = 1 and, at the same time,
cosy = 1,siny = 0. But this is the case only forz = 0, =
2kx. Hence, it is necessary that
(99 2s — 21 = 2kmi.
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Every value w which is at all assumed by the exponential fune-
tion w = ¢’ is thus already assumed in & parallel strip, one of
whose boundaries can be obtained from the other by means 01
the translation (2x7). The strip

(10 —r < 30) <

is usually chosen as such a fundamental domain of the function
¢*: the upper boundary is included, the lower one is not.
6. In the fundamental strip (10), the exponential funciion o~

sumes every non-zero value w precisely once. The value 0, hmuever:.

18 assumed nowhere. Dod

The last is almost self-evident; for, according to (3),\

et =¢" =1, < ,\

and bence (by §8, Theorem), ¢° cannot equa]_Q\“Now, let w # 0,

and set, as before, |w | = o, am w = ¢.{FHen, we see imme-
diately from (4), that, for j.\f: :

11)  z=loge+ i@+ Zkar), ¥ Z 0, integral),

obviously " = w. Precisely “onb of the values (11) lies in the
fundamental strip (10). For any other value 2’ of this strip,
however, ¢° cannot a.lsp\be equal to w, because of the result
established in 5.
7. I we differehfiate the series (1) term by term, we again
obtain this sepies< Hence, for every z,
\s
\~ e = ¢".

In Rartzcular, the derivative is, consequently, everywhere differ-
\e:t Arom 0, and hence the entire z-plane is mapped conformally,
ithout exception, by means of the function w = &°.

8. This mapping is also easy to see in detail: In the funda-
mental strip (10) of Fig. 22, we imagine the straight lines
parallel to the boundaries to be drawn, and to be oriented from
left to right; likewise, we imagine the segments perpendicular
to these lines to be drawn from boundary to boundary, and to
be oriented from bottom to tap. If z describes one of the first-

o~

N
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N\

.n\’ 3
\ud (12) w =
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named lines from left to right, this means that in z = = + &
we hold the imaginary part y fixed and let z run through all
real numbers in increasing order. According to (5), then, the
image point w has the fixed amplitude y, and, consequently, lies
on the ray which emanates from 0 and corresponds to this
amplitude; while its absolute value ¢° runs through the values
from 0 to -+« in increasing order. The image point thus de-
scribes the ray in question from 0 {excl) to « (excl): directed
line and ray correspond in a one-to-one manner. If z describes
one of the above-mentioned vertical segments from bottbm to
top, this means that we leave © fixed and let y run thrQugh the
values from —r {excl) to -+ « (incl). According 6 (5), w,
then, has the fixed absolute value ¢", and consequently, de-
scribes the circle with radius ¢ about the grigiiin the w-plane
precisely once in the positive sense, begiuning at the negative
axis of reals (excl) and returning to it (inelk). Thus, in particular,
the interior of the fundamental stripimapped in a one-to-one
and, without exception, confor'rpﬁi!\ina.nner on the interior of
the w-plane cut along the negative axis of reals.

N ”~ i wee”
Z | X5y
\'\‘ —C e
“ho 7 W 7
< <\ .g

FIGURE 22

P,

.'\M ) . . )
.(OF particular interest for various investigations (see §43)
is(the problem of developing the function
) 2 1

1 .z P

th O as center. According to §30, this is

possible, at all events, for 2 certain neig]:}borhacd of the origin,
The coefficients of the expansion obtained are denoted, for

historical reasons, by B,/nl, so that we set

in a power series wi
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1 = By n o ...
7 =1+ Bz + 3% + .

(13) :
L+gitg T o

Now, instead of calculating the coefficients according to the
general method of §30, we proceed here, and in all analogous
cases, as follows: By (13},

z 2 B, - .

i.e., on multiplying out the two power series on the lg&-:,~§ve

must obtain a power series whose constant term is eghial to 1

and whose remaining coefficients are all equal to 0.'\T‘Iajs yields
. . . N

the infinitely many equations &

1B, 1 Buy_ . . 1B 0N
T oo T e 1w D

(n=12 '\\2\‘. ;
'\
After multiplication by (n + 1)} Yhe binomial coefficients of

the (n 4 1)-th power appesg.r;,‘}iién'é on the left. The equations
therefore read s\

a e

0,

(9B, + 1 AN ) =0
AN
¢ L\
38, %\3B, + 1 =0
(19  N¥B.+ 6B+ 4B, +1 =0
INT
~. \\\ 5B, + 10B, + 10B, + 5B, + 1 = 0
N :”\ﬁ:, :' L ................................ s
) from which we obtain successively
i 1
B1=_§;Bz=6:-83=0,34= 1Ba=0130=1

30 B

These numbers are called the Bernowllian numbers. They are,
as the above caleulation shows, all rational numbers. Since their
calculation offers no difficulties in principle, they may be re-
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garded as “known.” With the exception of B, , all B, with odd
index n have the value 0. This follows (with the application of
Theorem 2 in §35) from the fact that, as is easily verified,

2
e -1

2
+ 2
is an even function of 2, i.e., has the same value for —z as for 2.

42, The functions cos z and sin z o \\
Considerations entirely analogous to those appearing at \,t;]ie:
beginning of the preceding paragraph lead us, by necessity, to
define the trigonometric functions cos © and sin z for.complex

variables by means of the relations K7,
2 2 o v } “zzs
—_ iy o —_— 1 -—1‘
(l) cos 2 1 31 a! + .; ( ) (Zk)'
P O
& Y
- A 25 o \ = . 21
@  sinz=2—gitp- ";{:‘:}"" kz., (=D @k + DI

Since the two series, just asthe exponential series, eonverge
everywhere, cos z and sin_z are also hereby defined as entire
Sunciions. cos z is an evq?z function, sin z is an odd function;
ie., for everyz, (™

(3) cos {<£2) = cos z, sn(—z = —sinz

The connegfign between our three series, whi.ch was already
employed-for real variables in §41, 3, now obviously also sub-
‘sists for\éomplex variables; i.e., for every complex z we have
Whgbtl‘f}re known as Euler’s formulas:

'n\' 3 - . .

“(4) ¢ = cosz + tsinz
N/ _

i i ix ~§8
(33 -—3 . e —_ e
& cosz=§v~%~—, sing =T
To prove these, we need only substitute for the occurring fune-
tional values, the power series defining them, whereupon, on

both sides of each of the equations, the same series is obtained.



120

Because of this extremely simple connection between cos z
and sin z on the one hand and ¢’ on the other, the investigations
of ¢os 2 and sin 2 present no new difficulties. Everything follows
very simply from the facts ascertained in §41.

1. The addition-theorems for the funciions cos and sin, known
from the real domain, ore olso valid in the complex domain; ie.,
for arbitrary complex numbers 2, and 2; we have slways

o~

cos {2, + 2,) = c082 COBZ, — ginz sinz,, N\
8 RS
gin (z, + 2;) = cos z, 8inz, + sinz, cos 2z, e\
For according to (5) and §41 (3), \\
IR —ix, -..’;,1’
coﬁ(z1+zg)=e .e +23 ﬂ‘x N
O

from which, with the use of (4), khQ ﬁ}st. of the formulas (6)
immediately follows. The second\i§ proved in an entirely
gnalogous manner. o\ ¢

2. The periodicity prope(ﬁeé;'khown from the real domain, are
also retained in the compleg'ddmain. Both functions have the (real)
period 2r; i.e., for werg 2,

co8 (zo\'-{-:&r) =cosz, gin(z+ 2r) =sinz

To prove this) we have only to apply the addition-theorems

just established, to the expressions on the left-hand sides,
noting/that cos 2xr = 1, gin 2r = 0.

(Sitice the facts established in 1. and 2. are formally the

E a8 in the real domain, all consequences which can be

> deduced purely formally from these facts also continue to hold.

“\\ Bui this is the entire formula apparatus of goniomelry, 88 it is

called. Thus, e.g., the formulas

cog’ z + gin’ z = 1,

— -] . .
co82 = cog’z —gin’z, gin 22 = 2 coszsin 2,

cos 2 + cosz, = 2 cog > -;z, cos 2L _2 4 ete.,
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are valid, withcut change; for arbitrary complex arguments
2, Z: , 22 . It 18 not necessary to write down all these formulas
in detail.

4, The calculation of the functional values cos z and sin 2z
does not raise any difficuliies either. For, making use of ()
and (4), we have, for z = = + 1y, :

cos{x + i) = i—)(e"‘“" 4- &)
7) L

» —¥ ¥ —u
e + e . . g —e N
— i8In T, (W)
3

= (08 L+ 5 5

and similarly \ N\
#\d

¥ —t
(8 sin(a:+z"y)=sinx-e -Ze +tcosx%e—.

B, The zeros of cos z and sin z, which are ﬁuﬂm to us from the
real domain, are also the only ones in ih{s comple:v domain, For if
we are to have cos z = 0, then, accozd}ﬁg to {5), we must have
¢’ = —g oredt = —1 = e" Hence, by §41 (9), it is neces-
sary that 2z = a7 + 2k, lg" \

a8 x
z'\ﬁ(zk_—l- 1 5
And if we are to have'sin z = 0, it follows, analogously, that
\ > .
we must have 2. &k, (& A integral}.
6. cos 2z =\ cos 2, if, and only if, 2z = Xz + 2kr—i.e,
under the-game conditions as in the real domain. For since

\ 2 + —_
. ] Zz . 2 z.
~:~\ 0082, — COBZy = 28in — 5 sin ! 3 2

e

N

ftns difference can be equal to zero only if (see 5.) either
(z + 2)/2 or (z; — 2)/2 is an integral multiple of =. In a
similar manner it follows that sin 2, = sin 2 4, and only i,

Za = & + 2k or 2 =7 — & "l"‘ 2k‘jl',—

again as in the real domain.
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7. The functions cos z and sin 7 assume, in a pertod-sirip, say
in the strip

{9 —r < RE =+

every value distinet from 1, at precisely two points, whereas each
of the two values ==1 is assumed af precisely one potnt of the sirip.
At the point 0, cos z = 1; at the point x, cos z = —1. Ac-
cording to 6., these values can be assumed at no second point
of the strip. However, if w is an arbitrary complex number
distinci from =1, and if we are to have cos z = w, thef,)\by
(5), we must have o\

N

e+ = 2w and hence € = w +,\' w — 1.
£

Since w # =1, the symbol v/ w* — 1 has preei?s}ly two distinet
values, and hence the same is true for w < +/w? — 1, whose
two values we call w, and w, Accordi?%“to §41, 6., each of
the two equations ¢* = w, and ¢° = wshias precisely one solution
z in the strip —7 < J(2) £ +={ Consequently, each of the
equations .

hasg precisely one solupion z in the strip —x < R{z) £ +
If we call the solu‘gig‘tﬁ 2, , 23 , respectively, then 2z, # 2z, and
co8 2, = c0S 2 %=, By 6., however, there can be no third
point z at whi¢hycos z = w.—For the function sin 2, the proof
is entirely analogous.

8. By differentiating the series (1) and (2) term by term, it
follov{s:'afs in the real domain, that

K\

W\ .
LY d cosz dsin z

AN = —sgin z, do = CO8Z

for every z. Thus, the mapping effected by the function w =
cos z ig conformal everywhere except at the points %r; the map-
ping effected by w = sin 2, everywhere except at the points
2k + 1)x/2. _

9. The details of these mappings follow from formulas (7)
and (8). (7) shows, e.g., that under the mapping effected by



123

w = cos 2, the straight lines (segments) which are parallel
{perpendicular) to the boundaries of the period-strip, go over
into eonfocal hyperbolas (ellipses). We must leave it to the
reader to carry out the (very simple) proof.

43. The Functions tan z and cot z

The functions tan z and cot z are defined for complex vari-

ables, as in the real domain, by means of the relations o \\‘
m tanz = S0f  ogpz = S0F R
cos 2 sin z O

Since cos z and sin z are regular in the entire pla;né:éb is tan 2
at all points where cos z % 0, that ig, in the entire plane with
the exception of the points {2k + 1)#/2. Swmilarly, cot z is
regular in the entire plane, except at the polnts k. The further
properties can be derived easily from'4he properties of the
funciions cos z, 8in 2z, and €°, now fa}mhar to us:

1. The power-series expansion, of. ®ach of the two functions
follows from the division prolglsmtreated in §41, 9. We have

e ’{:'*—‘iz g 1 . 9
(2} cotz= e 3’6-;'-!-6-“ = i'esm o O e : ,
smz @\ —e et —1 e’ —1

and hence, by §4119;

A

zcotzﬁaz_ﬁ"’ 2z 1 —zz+1+Bx(2zz)-!- 2 (20" + -

32 ir
'\Qt
Now,&ince B, = ~1/2, and since all Bernoullian numbers with
ogid\'i'hd ex vanish,
AN g 2k
O zcotz=1—22—3;232+ -4 (=1 2(2}32: 2l Y
&)

1. 1 4 2
=1—-3% ~ 3% ~55°

Since, now, further, tan z = cot z ~ 2 cot 22, the expansion of
tan z follows immediately from (2):
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_43
tanz = 5 Bz +
. 2!&(221‘ — 1)
(2k)!
17

_ 1a, 2 s 17 -, ...
=zt3e e s oo

(4) + (-p* B2 +

Each of these power series has certainly a positive radius-of
convergencs. Its exact value, however, can be found only after
deeper considerations; it is « for the series (3), #/2 for t};aj'se’r.iés
(4). (Cf. Th. F. I, §31.) RO

2. The formal properties, which find their exp;gég?én in the
addition-theorems and the remaining goniometricformulas (e.g.,
in the one just used to prove (4)), are, naturally, for the same
reason 4s in the case of cos z and sin z, the 3ame as in the real
domain. We may therefore forego writingldown these formulas
in detail. O

3. From the addition-theorem, it follows that the periodicity
properties, too, are the same a;s;iii:the real domain; for every z,

(5} tan (z + 7) = t:am;é’,a'N cot (z + x) = cot 2,

It is customary to choo'@ the strip

¢. &\
\ \~%<§H‘(z)é+g

a8 peﬁad—s{%ﬁ;:.;—Similar to the case of cos z and sin 2z, it can

also besshiown here, more precisely: If tan 2z, = tan z; , then

Z a:n&s;'diﬂer only by an integral multiple of =, and the same

holds'for cot 2. Thus, our functions possess the same value at {wo

. \dz.stmct poinds if, and only if, one of these poinds can be oblained

N/ from the other by means of a single or repeated application of the

translation (7). For from tan 2, = tan z, , as well as from cot

2, = cot 2, , it follows that we must have sin (z; — 2z,) = 0,

and hence (see §42, 5} 2, — 2, = kn.

4. In the period-strip —x/2 < R(z) £ + =/2, tan z and

cot, z assume every complex value, distinct from 1, precisely once;

the values 2=t, on the other hand, are not assumed at all. 1t suffices
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to prove this for cot z. For since tan z-cot z = 1, the assertion
concerning tan z then follows automatically. Now, the equation
cot z = =i would mean, by (2), that 2¢/(¢*** — 1) would have
to equal 0 or —2¢. The first is eertainly possible for no value
of 2, and the second would require that ** = 0, which also is
never the case. Hence, we have always cot 2 # -=4. If, however,
w is an arbitrary number different from o4, then the equation

cot z = w signifies, according to (2), that .
41 e wed B
(6) 1= =w o &F=——" ()
&t — 1 w—i L\
Since we have here on the right a defihite and, morgdver, non-
zero value, there exists, by §41, 6, precisely ong, umber 2z’ in

—7 < () £ + =, for which ¢ = %t—‘\#::. Hence, there
exists also only precisely one value zwith —x/2 < R =
/2, for which the second of tl:!q‘e@u’a‘tions (6) holds, i.e., for
which cot z = w. Y

5. The derivatives of our fuctions result, of course, simply
from the defining equations ,(i)’: We have, as in the real domain,

dtanz _ R deotz 1
dz Ages'z' d sin’Z
\\

These derivatiyes™obviously vanish nowhere. The mapping
effected by either one of our functions is therefore conformal
at every point’at which the function is defined. We cannot go
into de ail:-x\bf these mappings.

\:‘ 44. The hyperbolic functions

A

R }.}‘or various applications it is useful to introduce, besides the

. ;"\’:'tﬁgonometric functions, the so-called hyperbolic functions cosh

z, sinh 2™ They are defined by means of the everywhere-
convergent power-series
2 4

2 2
1 coshz=1+ﬁ-—}-‘ﬁ+--,

MSometimes, in addition, the functions tanh z = sinh z/ecosh z and
coth z = cosh z/sinh 2 are ured; however, we shall not consider them here.
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2 sinhz = 2 + +

and are therefore enttre functions. They are related to cos z and
sin z through the simple formulas

{3} cosh z = cos (iz), sinh z = —1 sin (22),

as the series representations show. It follows from these formnu-
las, that all properties of the new functions and the formu O
apparatus valid for them turn out to be very similar to thgse
of cos z and sin 2z, so similar, that it is unnecessary t(,es BATTY
out all details. We therefore call attention, without pnoo‘f only

to what is most important: B

1. cosh 2z is an even function, sinh 2 is an odd, ﬁunctlon

2. cosh z = §(° + ¢%), sinh z = }(e" =)&), ¢ = cosh
z + sinh z )

3. The addition-theorems read: (0

\C
cosh (2, + 25) = cosh z, cosh\-F sinh 2 sinh z, ,
ginh (z, + 2,) = cosh z,, smh 2, + sinh 2, cosh 2, .

4. From these we get, eg’,..'
cosh® 2 — sinh® 2 = A, eosh 22 = cosh® 2 4 sinh? 2, ete.
5. Both functions aré\}enodlc and have the period 2ui.

dcoshé\\ , d sinh z
O T gy Temha T = cosha
N/
“\ o\',o
AV
\\



CHAPTER XIII

THE LOGARITHM, THE CYCLOMETRIC
FUNCTIONS, AND THE BINOMIAL SERIES

45. The logarithm "

‘The natural logarithm is defined, as in the real domain,%
be the inverse of the exponential function. But since the lafter
has turned out to be periodicin the ecomplex domain, g somewhat
more profound differences from the real domain tha,Qheretofore,
appear upon further investigation of the log&n@u

DrFmviTion. The number b shall be saadge be o (not the)
natural logarithm of a—1in symbols:. .\\;

b=logav’~. )
if e’ = a.

- Consequently, by §41 5 and 6 every number different from
0 has infinitely many natural loganthms Precisely one of these,
it is called the principal vadue of the logarithm of g, is such that
its imaginary part lie§\between —= (excl.} and 4= (incl.}). All
remaining logarit ) of the same number a differ from the
principal value © by an additive multiple of 2xi If we
denote the prmclpal value by Log a, say, then the formula

8] \loga = Log a + 2k, (k=0 1, £2,..),

furnt h@B “all the values of log a. No logarithm can be defined
for\:t\he number 0, however, (because of §41, 6).

>SMoreover, if

{2) |a| = A, and the principal value of am a is «, then it

follows immediately from §41, 5, that
3) loga = log A + i,

if log A is understood to be the (unique, real) natural logarithm
of the positive number 4, known to us from real analysis. Thus,
all values of log o have the same real part, log A, and the

127
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imaginary parts differ oﬁly by multiples of 2x. By §41, 3,
(4)  Log(—1) = =i, Log i = 4xi, Log (—3) = —jmi.

The familiar laws for operating with natural logarithms,
namely

log (z:2:) = logz, + log 2,
2 (zi = 0; 22 # 0)1
)] Io, ;i = logz — logz,, N\

log2* = k log 2, (z#=0,k intggfal},:

are now valid because they follow formally from the Q’v’ep defi-
nition of the logarithm. However, because of the smbiguity of
the symbol “log”, they are to be understood ity tﬁe sense that
each value of one side is also contained ameng the values of
the other side, except in the last of the ,t}i%e laws, where all
that we can say in general is that every.value on the right is
contained among the values on the lefty™

Since, when considering the fumgtion w = log z, we are
dealing merely with the invqrsé’ﬁf the relation ¢° = z, the
arguments in §41, 8 immedigtely furnish us with all details of
the mapping effected by tlre logarithmic function. We need only
make therein a suitable-dnterchange of z and w. Thus, by means
of the principal value®w = TLog 2, the interior of the z-plane
eut along the negative axis of reals, is mapped in a one-to-one
and, without,exteption, conformal manner on the interior- of
the strip —;;(.( ${w) < + 7 in the w-plane.

It cancbe'shown, in the following manner, that the principal
value t}iﬁg [1/(1 — 2)], for |z} < 1, is represented by the same
sgr\iggi;as in the real domain; i.e., that

! Log—1—= 3%

1—-z Zin

for |z] < 1. Since, forreal | 2| < 1, log [1/(1 — o)} = 2, (z"/n),
#=1
the composite function™

BCE p. 20, footnote 24,
7We shell find it convenient sometimes to write exp z instead of &=
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- T 1
oxp (..z.; n) 1l
This means more precisely: If we substitute (see the last con-
siderations in §30) the power series

y..—,.x_[-%_!_ ...+%+;..

in the power series . o X
yz y‘n '\\
(™) 1+y+2~!+-'°+a+'“, )

N

{
the result obtained is the geometric series 3 zf;since this is
the expansion of 1/{1 — ). This operation of*'\%stituting one
power series in another is a purely forma.l.on’e,\so that we must
also get the geometric series if we substitqte‘the power series

7 Py
{ )

+2 4 %él
w =2 — . e —_— e
2 \‘\\ n
in the exponential series -+
w{l":; wn
(8) 1+w‘:’§f+.“+ﬂ+”"

.\\
Hence, for | z]| <43 -
¢ L\

" ‘\\ Ll "
F 1, . : z _
exp (E“;) =7"7 ie., § " log T —7
¢/

Now,,jkimlt the series represents actually the principal value,

tbgt;:i‘r; other words, — < S‘(E (2"/?1}) = + xfor|z] <1,
RS n=l

,,{:éan be seen as follows: This imaginary part of the sum of the
) series is, by (3), equal to one of the values of am [1/(1 — 2)],

and hence, equal to ¢ + 2km, where ¢ denofes the principal
value of this amplitude. For |z| < 1, this principal vaue ¢
satisfies the condition —x/2 < ¢ < +/2. Now, for z = 0, the
series certainly yields the principal value Log 1; we must there-
fore take k — 0. And since (3, (z"/n)) varies continuously
with z in | 2| <1, k must remain equal to 0.
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From {6) we obtain, by replacing z by —z and changing sign:

7z
® Lg(l+4g=z—g+zg—+-, le|l<L

The sum of (6) and (9) gives the series

142

(10 L —2[+‘18+z:+---] lz] < 1.7
) Legy S =frtgty R '

Finally, we determine the derivative of the logarithmic fone~ &
tion. Let z lie in the interior of the plane which has been Gk
as above. Then, for all sufficiently small % » 0, ~N

£

Log (z + h) — Logz = Log (1 + ) \\“

N
If we set h/z = R’ for brevity, we obtain 3

Log(z+ 4 — Logz 1 Log (4. 'h’!
h T2 AW ’

The series (9) shows, however, that, pé:h'\-:é 0, the last quotient
tends to 1. Hence, everywhere in the interior of the cut plane,

dlogz 1 dlogz 1
4 =7 and, cfmse:qllently, also & — 5

'\
46. Tlgé}ydometric functions

On the basis of the resulis in §842 43, we can undertake to
find the inverse® df the trigonometric functlons .Just as in the
preceding pafagraph we considered the inverse of the expo-
nential function. This leads to the cyclometric (or inverse trigo-
WWWW We confine ourselves to the inverses of sin
z and i}an z.

e ) Accordmg to §42, 6 and 7, the equation sin w = z has,
\for a.rbltranly given 2, an infinite number of solutions w. If

w* is a definite one of these, all remaining ones are contained
in the two formulas

(1) w427 and 7 — w4 %r, (b =0, £1, £2,...).

""To see that this series also represents the principal value on the left,
requires 5 little reflection, which we leave-to the reader.
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From this we easily infer that there is always precisely one of
these values which lies in the strip :

@ -3 S R@) = +5,
_ O
-.4 0 4.5{ (::,',
O
N
v

FIGURE 23 e
provided that we omit from this strip thébjpart of the boundary
which lies below the axis of reals (eee ¥ig. 23). In this sense,
then, the sine function possesses a(siple-valued inverse, which
is denoted by A\

ol

(3) : 19.;%"&}0 sin z,

We call it, more precisely, the principal value of the function,

terming all other #alies (1) its subsidiary values. Since (cf.

§42, 7) the equati_@_sin w = # is synonymous with the equation

¢ =iz + VD— 2,

Q.4
(4 iﬁi{,\"' arcgin z = %Iog Gz + V1 -2,
N

Hoﬁﬁever, this equation must zgain be understood to mean that
. (&very value of one side is contained among the values of the
V ‘ther side. Thus, whereas sin z can be expressed in terms of the
exponential function, the funetion are sin #, inversely, can be
expressed essentially in terms of the logarithmic funetion.

Considerations entirely analogous to thoss in §42 now show,

that the series expansion of the real arc-sin-function, known 0
us from the real domain, must remain valid also in the complex

domain, Hence, for [z ] < 1,

N/
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. 1.32°  1:3-54"
arosinz =z + 3 —+ﬂ§+24s7+
®)

(Jz] < 1.

This series represents actually the principal value of our func-
tion. For, by its definition, this is the case if, and only if, ihe
sum of the series (5) has a real part less than /2. But we have,
in fact, . \\'\

3 3 y.
m(z+%§—+ )é lz|+”il—+ SR

4

N\ S
£

\
= aresin |2 | < arcsm\‘l\ 5 5
We know, moreover, from the real domain) j}mt the repre-
sentation (5) is still valid forz = 41, and\hence, that

© T-1 +—~+—3\

II. According to §43, 4, the. equatlon tan w = z has, for

arbitrarily given z = i, always one solution w such that
—x/2 < Rw) S +7/2: We designate this solution as the
principal value of the f\up\:tlon

() ¢, \\ w = arc tan 2.

All remaining solutions of the same equation are obtained from
the pnnmpaksolutlon by the addition of arbitrary integral
multlplestvf w, and constitute the subsidiary values of this
functidn) Since the equation tan @ = z is synonymous with the

equation
:”\’::' le!‘w — e—l'w _ e 1 + iz
\} ie—"’+e““’_z or & =TI,
we have in
1 14 4z
8 w = t = =
(8) are tan z 2il°g1—£z

a representation of the arc-tan function in terms of the log-
arithm. Equation (8) is, naturally, again to be understood in
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the sense that every value of one side is contained among the
values of the other side.

Finally, the same considerations as in the preceding cases
show that, for [z < 1,

3

(9) arctanz=zf§—4;25—s—+"‘, (Iz] < Di—

an expansion which, in virtue of (8), can also immediately be
derived from the expansion §45 (10). This derivation shows also
that the series in (9) again represents actually the pribipal
value of arc tan z. For; this series is obtained if we substitute
the series (6) and (9) of §45 for the respective logarithms on
the right-hand side in N 3
' 1 1, NS
w =-2;.10g(1 + €2} +ElOg1_:Tb'
Since these last two series have a summAwhose imaginary part
lkies batween —#/2 and +7/2, th:e\Se}ies in {9) has a real part
which likewise lies between —m/2'end +x/2.

47. The binomial §gr":iéé‘and the general power

In the real domain, by the binomial series we mean the series
~ :

= fa\ . NN alea —1) 2, ..
,,z.;,(n)"f"l"'“"’*' 15 2t
? @1 @=nt1
\ '." ale — ek — 1 N .
O T T T

Iti :ef{x}ergent for|z] < 1,asis shown, without difficulty, by the
ratio test; « here may denote an arbitrary real number. The sum
¢~ of this series is the power

N

Ve {1+ 2)°

“of the (for |z | < 1) positive base (1 + ) to the exponent «;
this power, in the real domain, is fully uniquely defined (as 8
positive value). We shall see that these facts, too, in the main,
continue to hold if we allow z and « to be complex numbers,
To this end we require, first, the following
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DerFmwirioN. Let b be a non-zero complex number, and let o
be a completely arbitrary complex number. Then, by the (general)
power b* we mean every value given by the formula

3) bt = el

That one of the values (3) which is oblained by taking for log b,
there, its principal value, is designated as the prencipal value of b°.
Thus, e.g.,

$

5= o8 = TR g r/D -k (k= 0, & 14:-’*:)
Of these infinitely many values of i° (all of which aré 'real B,
~7/? i3 the principal value.™ A\ )

{7
Now, in the real domain, for || < 1 and real a we have,
on the one hand, v
N\ 3
(1 + x)a — ealog(l+=) —_ exp{ (ﬂ? _Ozé_é :C_ —_ +. . .)},
N2 T3
and, on the other hand, i.’ ”
1+ gs= % (a)z"-
~\ ,“ n=0 A2

R P 3
This means: If we sub;titute the series y = a(x AT )
M 2
in the exponerntial series for ¢, and arrange in powers of z in
accordancewwith §30, we obtam the binomial series. This purely
formal operatmn remains valid, naturally, if « and z denote
ompkax snumbers. The power series

2 3

;"(14) w= Of(z - —2" + —3“ - -l-----), (« arbitrary, complex),

-

#Without proof, we call attention to the fact that, for the general power
defined above, the old rules of operation
bor b = bt and (18)s* = Yoo’
do not hold any more,—not even in the extended sense that every value of
one side is contsined among the values of the other gide. On the contrary,
in each of these two egquations, the lefi-hand side represents more valies
than the right-hand side.
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is absolutely convergent for | z| < 1 and is then the prmclpal
value of & log (1 + 2}. Hence, if we substitute this series in
the exponential series for e, and arrange in powers of 2z, we
must again obtain the binomial series

S =t tar Gt

nul

{5)
alg — 1) - (a-—n+1).
+ X -
and its sum must be the prineipal value of x'“f \ “..‘
®) (14 2% —

provided that the effected TesIrangement in\txhg sense of §30 is
permlssxble But this is certainly the eage,/because the expo-
nential series converges everywhere, and the series (4) remains
convergent for [z| < 1 if all it8 tétms are replaced by their
respective absolule values.’ Thu‘s forall | z | < 1 and arbitrary,
complex o, the series (5) repre’sents the power (6),—the latter
is developable, as a functlan 0f z, in the power series (5).

®From this it follows ‘aummatlcally, that the binomial series is abso-
lutely convergent for }(}s < 1. This is alsa very easy to ghow directly, with
the aid of the ra.tlo t gince, 88 7~ ®,

l(w)z Gk

and ltgassumed that |z | < 1.
~ {

- n
+1

‘2

—lzl,
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Multiple-valued, 109
Multiplication, 3, 4, 9, 304,

Nearly all, 73

Negative of a complex number, 18,

22
Neighborhood, 34
Nest, of intervals, 76
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Reversmn of angles, 47
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— of a polynomial, 110
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Rotation, 9, 30, 44
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Rules, derived, 5, 24
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Theory of functions, 1
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. Translation, 43
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